Пистолет гаусса схема. Схема гаусс пушки своими руками от батареек. Установка деталей в корпус для Пушки Гаусса


Привет, друзья! Наверняка кто-то из вас уже когда-то читал или лично сталкивался с электромагнитным ускорителем Гаусса, который более известен под «Пушкой Гаусса».

Традиционная Гаусс-пушка строится с применением труднодоступных или довольно дорогих конденсаторов большой емкости, также для осуществления правильной зарядки и выстрела требуется некоторая обвязка (диоды, тиристоры и так далее). Это может быть довольно сложно для людей, которые ничего не понимают в радиоэлектронике, но желание поэкспериментировать не дает сидеть на месте. В этой статье я попытаюсь подробно рассказать о принципе работы пушки и о том, как можно собрать упрощенный до минимума ускоритель Гаусса.

Главной частью пушки является катушка. Как правило ее мотают самостоятельно на каком-либо диэлектрическом немагнитном стержне, который в диаметре несильно превышает диаметр снаряда. В предложенной конструкции катушку можно намотать даже «на глазок», потому что принцип действия просто не позволяет произвести никаких расчетов. Достаточно добыть медный или алюминиевый провод диаметром 0.2-1 мм в лаковой или силиконовой изоляции и намотать на стволе 150-250 витков так, чтобы длина намотки одного ряда была примерно 2-3 см. Можно использовать и готовый соленоид.



При прохождении электрического тока через катушку в ней возникает магнитное поле. Проще говоря, катушка превращается в электромагнит, который втягивает железный снаряд, а чтобы он не оставался в катушке, во время его вхождения в соленоид нужно просто отключить подачу тока.

В классических пушках это достигается за счет точных расчетов, применения тиристоров и других компонентов, которые «обрежут» импульс в нужный момент. Мы же просто будем разрывать цепь «когда получится». Для экстренного разрывания электрической цепи в быту используют плавкие предохранители, их можно использовать в нашем проекте, однако более целесообразно заменить их лампочками от елочной гирлянды. Они рассчитаны на питание низким напряжением, поэтому при питании от сети 220В мгновенно перегорают и разрывают цепь.



Готовое устройство состоит всего из трех деталей: катушки, сетевого кабеля и лампочки, подключенной последовательно катушке.


Многие согласятся, что использование пушки в таком виде крайне неудобно и неэстетично, а порой даже очень опасно. Поэтому я смонтировал устройство на небольшом кусочке фанеры. Для катушки установил отдельные клеммы. Это дает возможность быстро менять соленоид и экспериментировать с разными вариантами. Для лампочки я установил два тонких обрезанных гвоздя. Концы проводов лампочки просто обкручиваются вокруг них, поэтому лампочка меняется очень быстро. Обратите внимание, что сама колба находится в специально проделанном отверстии.


Дело в том, что при выстреле происходит большая вспышка и искры, поэтому я посчитал нужным немного отвести вниз эту «струю».


Скорость вылета снаряда здесь довольно большая, но даже бумагу он пробивает с трудом, иногда железные пули вбиваются в пенопласт.

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее – это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд, а заядлые геймеры спешно подбирают с пола челюсть – ради этого стоит потратить денек на сборку пушки Гаусса своими руками .

Как водится, начать мы решили с простейшей конструкцииоднокатушечной индукционной пушки . Эксперименты с многоступенчатым разгоном снаряда оставили опытным электронщикам, способным построить сложную систему коммутации на мощных тиристорах и точно настроить моменты последовательного включения катушек. Вместо этого мы сконцентрировались на возможности приготовления блюда из повсеместно доступных ингредиентов.

Итак, чтобы построить пушку Гаусса, прежде всего прийдётся пробежаться по магазинам. В радиомагазине для самоделки нужно купить несколько конденсаторов с напряжением 350–400 В и общей емкостью 1000–2000 микрофарад , эмалированный медный провод диаметром 0,8 мм , батарейные отсеки для «Кроны » и двух 1,5-вольтовых батареек типа С , тумблер и кнопку. В фототоварах возьмём пять одноразовых фотоаппаратов Kodak , в автозапчастях – простейшее четырёхконтактное реле от «Жигулей», в «продуктах» – пачку соломинок для коктейлей , а в «игрушках» – пластмассовый пистолет, автомат, дробовик, ружьё или любую другую пушку, которую вы захотите превратить в оружие будущего.

Мотаем на ус…

Главный силовой элемент нашей пушки – катушка индуктивности . С её изготовления стоит начать сборку орудия. Возьмите отрезок соломинки длиной 30 мм и две большие шайбы (пластмассовые или картонные), соберите из них бобину с помощью винта и гайки. Начните наматывать на нее эмалированный провод аккуратно, виток к витку (при большом диаметре провода это довольно просто). Будьте внимательны, не допускайте резких перегибов провода, не повредите изоляцию. Закончив первый слой, залейте его суперклеем и начинайте наматывать следующий. Поступайте так с каждым слоем. Всего нужно намотать 12 слоев . Затем можно разобрать бобину, снять шайбы и надеть катушку на длинную соломинку, которая послужит стволом. Один конец соломинки следует заглушить. Готовую катушку легко проверить, подключив её к 9-вольтовой батарейке : если она удержит на весу канцелярскую скрепку, значит, вы добились успеха. Можно вставить в катушку соломинку и испытать её в роли соленоида: она должна активно втягивать в себя отрезок скрепки, а при импульсном подключении даже выбрасывать её из ствола на 20–30 см .

Препарируем ценности

Для формирования мощного электрического импульса, как нельзя лучше подходит (в этом мнении мы солидарны с создателями самых мощных лабораторных рельсотронов). Конденсаторы хороши не только большой энергоемкостью, но и способностью отдать всю энергию в течение очень короткого времени, до того, как снаряд достигнет центра катушки. Однако конденсаторы необходимо как-то заряжать. К счастью, нужное нам зарядное устройство есть в любом фотоаппарате: конденсатор используется там для формирования высоковольтного импульса для поджигающего электрода вспышки. Лучше всего нам подойдут одноразовые фотоаппараты, потому что конденсатор и «зарядка» – это единственные электрические компоненты, которые в них есть, а значит, достать зарядный контур из них проще простого.

Разборка одноразового фотоаппарата – это этап, на котором стоит начать проявлять осторожность . Вскрывая корпус, старайтесь не касаться элементов электрической цепи: конденсатор может сохранять заряд в течение долгого времени. Получив доступ к конденсатору, первым делом замкните его выводы отверткой с ручкой из диэлектрика . Только после этого можно касаться платы, не опасаясь получить удар током. Удалите с зарядного контура скобы для батарейки, отпаяйте конденсатор, перемычку к контактам кнопки зарядки – она нам больше не понадобится. Подготовьте таким образом минимум пять зарядных плат. Обратите внимание на расположение проводящих дорожек на плате: к одним и тем же элементам схемы можно подключиться в разных местах.

Расставляем приоритеты

Подбор ёмкости конденсаторов – это вопрос компромисса между энергией выстрела и временем зарядки орудия. Мы остановились на четырех конденсаторах по 470 микрофарад (400 В) , соединенных параллельно. Перед каждым выстрелом мы в течение, примерно, минуты ждем сигнала светодиодов на зарядных контурах, сообщающих, что напряжение в конденсаторах достигло положенных 330 В . Ускорить процесс заряда можно, подключая к зарядным контурам по несколько 3-вольтовых батарейных отсеков параллельно. Однако стоит иметь в виду, что мощные батареи типа «С» обладают избыточной силой тока для слабеньких фотоаппаратных схем. Чтобы транзисторы на платах не сгорели, на каждую 3-вольтовую сборку должно приходиться 3–5 зарядных контуров, подключенных параллельно. На нашем орудии к «зарядкам» подключен только один батарейный отсек. Все остальные служат в качестве запасных магазинов.

Определяем зоны безопасности

Мы никому не посоветуем держать под пальцем кнопку, разряжающую батарею 400-вольтовых конденсаторов. Для управления спуском лучше установить реле . Его управляющий контур подключается к 9-вольтовой батарейке через кнопку спуска, а управляемый включается в цепь между катушкой и конденсаторами. Правильно собрать пушку поможет принципиальная схема. При сборке высоковольтного контура пользуйтесь проводом сечением не менее миллиметра , для зарядного и управляющего контуров подойдут любые тонкие провода. Проводя эксперименты со схемой, помните: конденсаторы могут иметь остаточный заряд. Прежде чем прикасаться к ним, разряжайте их коротким замыканием.


Artem

Подводим итог

Процесс стрельбы выглядит так:

  • включаем тумблер питания;
  • дожидаемся яркого свечения светодиодов;
  • опускаем в ствол снаряд так, чтобы он оказался слегка позади катушки;
  • выключаем питание, чтобы при выстреле батарейки не отбирали энергию на себя; прицеливаемся и нажимаем на кнопку спуска.

Результат во многом зависит от массы снаряда.

Соблюдайте осторожность, орудие представляет реальную опасность.

Как-то я играл в всеми известную игру сталкер,и увидел там такое необычное оружие - пушку гаусса. Она имела самые лучшие параметры оружия. В интернете я нашел статью как сделать это самое оружие. Но как на зло у меня не было деталей для изготовления гаусс пушки.

Я нашел схему гаусс пушки от 220 Вольт и посмотрел на работу пушки, начал разрабатывать свою схему гаусс пушки, на доступных элементах и с питанием от 6-15 вольт.

Решил использовать преобразователь напряжения от схемы , но немного изменил схему и трансформатор будет другой. В итоге получилась такая схема:

Генератор прямоугольных импульсов собран на транзисторах VT1-VT2 генерирует импульсы высокой частоты которые проступают на первичную обмотку трансформатора и генерируют импульсы высокого напряжения на вторичной обмотке,которые выпрямляются диодом VD1 и конденсатор C1 заряжается до напряжения 250-350 Вольт.

Трансформатор имеет первичною обмотку 3-7 витков проволоки 1мм. И вторичную обмотку 90-120 витков проволоки 0,3-0,4мм.

Мотаем трансформатор на сердечнике от трансформатора от любого импульсного блока питания.Главное что б обмотки влезли.

Без нагрузки при питании 12 вольт на выходе около 700-900 вольт.После диода 380-450 вольт.

Изготовление катушки (соленоида) не составит труда:
Мотаем виток к витку катушку проволокой 0,6-0,8 мм с общим сопротивлением 3-5Ом (при сопротивлении 1,5Ом результат намного лучше при батарее конденсаторов 1000мф*200в) на пластиковой трубке с зазором 0,4-0,7 см.

Для контроля напряжения параллельно с конденсатором подключите вольтметр и когда конденсатор зарядится до нужного напряжения отключаем схему от питания и вставляем снаряд около катушки в трубку(снаряд-отрезок гвоздика длинной 2-4 см и диаметр зависимо от трубки и от дальности полета подберите сами)

Прицеливаемся и нажимаем на выключатель SA1. Если снаряд застрял по средине трубки,или вылетел на небольшое расстояние, то попробуйте поиграться с расстоянием между снарядом и катушкой.

Несколько фотографий:

Заряд конденсаторов(от АКБ-гораздо быстрее,у меня бп слабый)

Жгу лампочку от преобразователя.

ДОПОЛНЕНИЕ(17.09.2013)

Следует добавить неоновою лампочку для индикации заряда конденсатора. Для корректного отображения состояния конденсатора - сделан удлинитель напряжения на 3 (для подключения неонки к конденсатору *200 Вольт.) Для подключения конденсатора на другое напряжение- делитель надо другой.

Неонка - от чайника простая на 220 Вольт. Порог зажигания-60-80 Вольт.

Вот схема подключения:

Резисторы для 200 вольт.При 200 вольт - лампочка светится.

Вот несколько фото и видео:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ805АМ

1 Любой NPN мощный В блокнот
VT2 Биполярный транзистор

КТ361А

1 Любой маломощный PNP В блокнот
VD1 Выпрямительный диод

FR107

1 ВЧ 1000В В блокнот
C1 Конденсатор 0.1 мкФ 1 25V В блокнот
С2 Электролитический конденсатор 500-10000 мкФ 1 350-450В В блокнот
R1 Резистор

100 Ом

1 0.25W В блокнот
R2 Резистор

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером.

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

PORTA |=(1<<1); // катушка 1
_delay_ms(350); / / время работы

Прошиваете микроконтроллер, и запускаете программу на микроконтроллере. Усилия катушки должно хватать на то, чтобы втянуть снаряд и придать начальное ускорение. Добившись максимального вылета снаряда, подстраивая время работы катушки в программе микроконтроллера, подключаете вторую катушку и также настраиваете по времени, добиваясь еще большей дальности полета снаряда. Соответственно, первая катушка остается включенной.

PORTA |=(1<<1); // катушка 1
_delay_ms(350);
PORTA &=~(1<<1);
PORTA |=(1<<2); // катушка 2
_delay_ms(150);

Таким способом настраиваете работу каждой электромагнитной катушки, подключая их по порядку. По мере увеличения количества электромагнитных катушек в устройстве электромагнитной пушке Гаусса скорость и, соответственно, дальность снаряда должны также увеличиваться.

Данную кропотливую процедуру настройки каждой катушки можно избежать. Но для этого придется модернизировать устройство самой электромагнитной пушки, установив датчики между электромагнитными катушками для отслеживания перемещения снаряда от одной катушки к другой. Датчики в сочетании с микроконтроллером позволят не только упростить процесс настройки, но и увеличат дальность полета снаряда. Данные навороты я не стал делать и усложнять программу микроконтроллера. Целью было реализовать интересный и несложный проект с применением микроконтроллера. Насколько он интересен, судить, конечно, вам. Скажу честно, я радовался, как ребенок, «молотя» из данного устройства, и у меня созрела идея более серьезного устройства на микроконтроллере. Но это уже тема для другой статьи.

Программа и схема -

.
В этой статье Константин, мастерская How-todo, покажет как сделать портативную пушку Гаусса.

Проект делался просто по фану, так что цели установить какие-либо рекорды в Гауссо-строении не было.








На самом деле Константину даже стало лень рассчитывать катушку.




Давайте для начала освежим в памяти теорию. Как вообще работает пушка Гаусса.

Мы заряжаем конденсатор высоким напряжением и разряжаем его на катушку из медного провода, находящуюся на стволе.

При протекании по ней тока создается мощное электромагнитное поле. Пуля из ферромагнетика втягивается внутрь ствола. Заряд конденсатора расходуется очень быстро и, в идеале, ток через катушку перестает течь в момент, когда пуля находится посередине.


После чего она продолжает лететь по инерции.

Перед тем, как перейдём к сборке следует предупредить, что работать с высоким напряжением нужно очень аккуратно.

Особенно, при использовании таких больших конденсаторов, это может быть весьма опасно.


Будем делать одноступенчатую пушку.

Во-первых, из-за простоты. Электроника в ней практически элементарна.

При изготовлении многоступенчатой системы нужно как-то коммутировать катушки, рассчитывать их, устанавливать датчики.








Во-вторых, многоступенчатый девайс просто бы не поместился в задуманный форм-фактор пистолета.






Ибо даже сейчас корпус забит полностью. За основу были взяты подобные переломные пистолеты.






Корпус будем печатать на 3D принтере. Для этого начинаем с модели.




Делаем его во Fusion360 все файлы будут в описании, если вдруг кто захочет повторить.


Постараемся как можно компактнее уложить все детали. Кстати, их совсем немного.
4 аккумулятора 18650, в сумме дающие примерно 15В.
В их посадочном месте в модели предусмотрены углубления для установки перемычек.


Которые сделаем из толстой фольги.
Модуль, повышающий напряжение аккумуляторов до примерно 400 вольт для зарядки конденсатора.


Сам конденсатор, а это банка 1000 мкФ 450 В.


И последнее. Собственно катушка.




Остальные мелочи типа тиристора, батарейки для его открытия, кнопки пуска можно расположить навесом или приклеить к стенке.


Так что отдельных посадочных мест для них не предусмотрено.
Для ствола понадобится немагнитная трубка.


Будем использовать корпус от шариковой ручки. Это значительно проще, чем допустим печатать его на принтере и затем шлифовать.


Наматываем на каркас катушки медный лакированный провод диаметром 0,8 мм, прокладывая между каждым слоем изоляцию. Каждый слой должен быть жестко зафиксирован.




Мотаем каждый слой максимально плотно, виток к витку, слоев делаем столько, сколько поместится в корпус.


Рукоять сделаем из дерева.




Модель готова, можно запускать принтер.


Почти все детали сделаны соплом 0,8 мм и только кнопка, удерживающая ствол, сделана соплом 0,4 мм.












Печать заняла около семи часов, так вышло что остался только розовый пластик.
После печати аккуратно очищаем модель от поддержек. В магазин покупаем грунт и краску.






Использовать акриловую краску не получилось, но она отказалась нормально ложится даже на грунт.
Для покраски PLA пластика существуют специальные спреи и краски, которые будут прекрасно держаться и без подготовки.
Но такие краски не нашлись, получилось корявенько конечно.

Красить пришлось наполовину высунувшись в окно.








Скажем мы что неровная поверхность - это такой стиль, и вообще так и планировалось.
Пока идет печать и сохнет краска, займемся рукоятью.
Дерева подходящей толщины не нашлось, поэтому склеим два куска паркета.




Когда он просох, придаем ему грубую форму при помощи лобзика.




Немного удивимся, что аккумуляторный лобзик без особых трудностей режет 4см древесины.


Далее при помощи дремеля и насадки скругляем углы.






Из-за малой ширины заготовки, наклон рукояти получается не совсем такой, как хотелось.


Сгладим эти неудобства эргономичностью.


Затираем неровности насадкой с наждачкой, вручную проходимся 400-й.


После зачистки покрываем маслом в несколько слоев.




Крепим рукоять на саморез, предварительно просверлив канал.




Финишной наждачкой и надфилями подгоняем все детали друг к другу, чтобы все закрывалось, держалось и цеплялось, как нужно.






Можно переходить к электронике.
Первым делом устанавливаем кнопку. Примерно прикинув так, чтобы она в будущем не особо мешалась.






Далее собираем отсек для аккумуляторов.
Для этого нарезаем фольгу на полоски и приклеиваем ее под контакты батарей. Батареи соединяем последовательно.


Все время проверяем чтобы был надежность контакта.
Когда с этим покончено, можно подключить высоковольтный модуль через кнопку, а к нему конденсатор.




Можно даже попробовать его зарядить.
Выставляем напряжение около 410 В, чтобы разряжать его на катушку без громких хлопков замыкающихся контактов, нужно использовать тиристор, который работает как выключатель.


А чтобы он замкнулся, достаточно небольшого напряжения в полтора вольта на управляющем электроде.




К сожалению оказалось, что повышающий модуль имеет среднюю точку, а это не позволяет без особых ухищрений брать управляющее напряжение с уже установленных аккумуляторов.

Поэтому берем пальчиковую батарейку.




А маленькая тактовая кнопка служит курком коммутирая через тиристор большие токи.






На этом все бы и закончилось, но два тиристора не выдержали таких издевательств.
Так что пришлось подбирать тиристор помощнее, 70TPS12, он выдерживает 1200-1600В и 1100А в импульсе.




Раз проект все равно заморозился на недельку, докупим еще и детали для того, чтобы сделать индикатор заряда. Он может работать в двух режимах, зажигая только один диод, сдвигая его, либо поочередно зажигая все.