Последовательный контур в цепи переменного тока. Электрический колебательный контур. Основные свойства индуктивности

Применение последовательного колебательного контура

Энергетические соотношения в последовательном колебательном контуре при резонансе

Влияние внутреннего сопротивления источника сигнала на АЧХ контура

Последовательный колебательный контур

Резонансные явления в электрических цепях

Последовательный КОЛЕБАТЕЛЬНЫй КОНТУР

ЛЕКЦИЯ 15

План лекции:

Резонансом электрической цепи называют явление обращения в нуль её реактивного сопротивления. Частоту, на которой имеет место этот факт, называют резонансной. Резонанс может возникать только в цепях, имеющих хотя бы по одному реактивному элементу разного типа проводимости.

Резонансы могут иметь место как в отдельных ветвях электрической цепи, так и в контурах. Поэтому в цепях с несколькими реактивными элементами разного типа может быть несколько резонансных частот.

В радиотехнике резонансные явления в электрических цепях широко используют для выделения полосы частот и усиления сигналов.

Цепь с последовательным соединением элементов называют последовательным колебательным контуром. Так как реальные индуктивности и ёмкости имеют потери, то это учтено на схеме последовательно включенным в цепь малым эквивалентным сопротивлением потерь (рис. 15.1).

Полное сопротивление этой цепи будет равно

где – модуль, и – активная и реактивная составляющие, – фаза полного сопротивления.

Рис. 15.1. Последовательный колебательный контур

На резонансной частоте реактивная составляющая полного сопротивления обращается в нуль, то есть выполняется условие

Отсюда получаем формулу для расчёта резонансной частоты через параметры последовательного колебательного контура

На частотах меньше резонансной реактивное сопротивление цепи отрицательно, то есть носит ёмкостный характер, так как сопротивление ёмкости больше сопротивления индуктивности и является преобладающим. На частотах больше резонансной реактивное сопротивление последовательного колебательного контура положительно и имеет индуктивный характер, так как в этом случае сопротивление индуктивности становится больше сопротивления ёмкости.

Преобразуем выражение (15.1) с учётом введённого понятия резонансной частоты:

Величину , имеющую размерность сопротивления, называют волновым или характеристическим сопротивлением контура, причём

Отношение характеристического сопротивления к сопротивлению потерь называют добротностью контура и обозначают символом , а обратную ему величину – затуханием:


Контуры низкого качества имеют добротность меньше 50. Для контуров среднего качества выполняется соотношение , для контуров хорошего качества – и для контуров высокого качества – .

Выражение в круглых скобках в формуле (15.4) обозначают греческой буквой и называют относительной расстройкой контура

По смыслу, относительная расстройка характеризует в относительных единицах отклонение частоты источника сигнала от резонансной частоты контура.

С учётом введённых обозначений формулу сопротивления (15.4) можно записать в более компактной форме:

Ток в цепи можно найти по закону Ома:

где – начальная фаза источника эдс, – фаза полного сопротивления в другой форме записи.

На резонансной частоте ток максимален и равен

Нормированная амплитудно-частотная (АЧХ)

и фазочастотная характеристики (ФЧХ)

тока приведены на рис. 15.2.

На резонансной частоте относительная расстройка (15.7) равна нулю. Поэтому

Следовательно, на резонансной частоте амплитуды напряжений на индуктивности и ёмкости равны друг другу и в раз больше амплитуды эдс:

Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений. Векторная диаграмма напряжений для контура на частоте резонанса приведена на рис. 15.3.

Область частот, на границах которой ток уменьшается в раз относительно своего максимального значения, называют полосой пропускания. На границах полосы пропускания согласно формуле (15.9) выполняется условие

Рис. 15.2. Амплитудно-частотная (а) и фазочастотная (б) характеристики тока в последовательном колебательном контуре

f 0 = 1 2 π L C {\displaystyle f_{0}={1 \over 2\pi {\sqrt {LC}}}}

Энциклопедичный YouTube

  • 1 / 5

    Например, при начальных условиях φ = 0 {\displaystyle \varphi =0} и амплитуде начального тока решение сведётся к:

    i (t) = I a sin ⁡ (ω t) {\displaystyle i(t)=I_{a}\sin({\omega }t)}

    Решение может быть записано также в виде

    i (t) = I a 1 sin ⁡ (ω t) + I a 2 cos ⁡ (ω t) {\displaystyle i(t)=I_{a1}\sin({\omega }t)+I_{a2}\cos({\omega }t)}

    где I a 1 {\displaystyle I_{a1}} и I a 2 {\displaystyle I_{a2}} - некоторые константы, которые связаны с амплитудой I a {\displaystyle I_{a}} и фазой φ {\displaystyle \varphi } следующими тригонометрическими соотношениями:

    I a 1 = I a cos ⁡ (φ) {\displaystyle I_{a1}=I_{a}\cos {(\varphi)}} , I a 2 = I a sin ⁡ (φ) {\displaystyle I_{a2}=I_{a}\sin {(\varphi)}} .

    Комплексное сопротивление (импеданс) колебательного контура

    Колебательный контур может быть рассмотрен как двухполюсник , представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как

    z ^ (i ω) = i ω L 1 − ω 2 L C {\displaystyle {\hat {z}}(i\omega)\;={\frac {i\omega L}{1-\omega ^{2}LC}}}

    Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).

    Эта частота равна

    ω h = 1 L C {\displaystyle \omega _{h}={\frac {1}{\sqrt {LC}}}}

    и совпадает по значению с собственной частотой колебательного контура.

    Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. Однако выбор соотношения между L и C зачастую не бывает полностью произвольным, так как обуславливается требуемым значением добротности контура.

    Для последовательного контура добротность растёт с увеличением L:

    Q = 1 R L C {\displaystyle Q={\frac {1}{R}}{\sqrt {\frac {L}{C}}}} , где R - активное сопротивление контура.

    Для параллельного контура:

    Q = R e C L {\displaystyle Q=R_{e}{\sqrt {\frac {C}{L}}}} ,

    где R e = L C R L + C {\displaystyle R_{e}={\frac {L}{CR_{L+C}}}} , которое в последовательном контуре включено последовательно с L и C, а в параллельном - параллельно им. Малые потери (то есть высокая добротность) означают, что в последовательном контуре мало, а в параллельном - велико. В низкочастотном последовательном контуре R e {\displaystyle R_{e}} легко обретает физический смысл - это в основном активное сопротивление провода катушки и проводников цепи.

    Подвозбудителя генератора (сам генератор при этом выдаёт 400 Гц). При отклонении частоты от номинальной реактивное сопротивление одного из контуров становится больше, чем другого, и БРЧ выдаёт на привод постоянных оборотов генератора управляющий сигнал для коррекции оборотов генератора. Если частота поднялась выше номинальной - сопротивление второго контура станет меньше, чем первого, и БРЧ выдаст сигнал на уменьшение оборотов генератора, если частота упала - то наоборот. Так поддерживается постоянство частоты напряжения генератора при изменении оборотов двигателя .

    Сегодня нас интересует простейший колебательный контур , его принцип работы и применение.

    За полезной информацией по другим темам переходите на наш телеграм-канал .

    Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.

    Первое, что приходит на ум - это механические колебания математического или пружинного маятников. Но ведь колебания бывают и электромагнитными.

    По определению колебательный контур (или – это электрическая цепь, в которой происходят свободные электромагнитные колебания.

    Такой контур представляет собой электрическую цепь, состоящую из катушки индуктивностью L и конденсатора емкостью C . Соединены эти два элемента могут быть лишь двумя способами - последовательно и параллельно. Покажем на рисунке ниже изображение и схему простейшего колебательного контура.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .

    Принцип действия колебательного контура

    Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции , направленная в сторону, противоположную току конденсатора.

    Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

    Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

    Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем , существование которого, как известно, невозможно.


    Еще одна важная характеристика – добротность Q . Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

    Резонанс LC-контура

    Электромагнитные колебания в происходят с определенной частотой, которая называется резонансной Подробнее про – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C , индуктивность катушки L , сопротивление резистора R (для LCR-контура ).

    Применение колебательного контура

    Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.

    Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис . Качественная и быстрая помощь в решении любых задач не заставит себя ждать!

    Электромагнитное поле может существовать и в отсутствие электрических зарядов или токов: именно такие «самоподдерживающиеся» электрическое и магнитное поля представляют собой электромагнитные волны, к которым относятся видимый свет, инфракрасное, ультрафиолетовое и рентгеновское излучения, радиоволны и т. д.

    § 25. Колебательный контур

    Простейшая система, в которой возможны собственные электромагнитные колебания, - это так называемый колебательный контур, состоящий из соединенных между собой конденсатора и катушки индуктивности (рис. 157). Как и у механического осциллятора, например массивного тела на упругой пружине, собственные колебания в контуре сопровождаются энергетическими превращениями.

    Рис. 157. Колебательный контур

    Аналогия между механическими и электромагнитными колебаниями. Для колебательного контура аналог потенциальной энергии механического осциллятора (например, упругой энергии деформированной пружины) - это энергия электрического поля в конденсаторе. Аналог кинетической энергии движущегося тела - энергия магнитного поля в катушке индуктивности. В самом деле, энергия пружины пропорциональна квадрату смещения из положения равновесия а энергия конденсатора пропорциональна квадрату заряда Кинетическая энергия тела пропорциональна квадрату его скорости а энергия магнитного поля в катушке пропорциональна квадрату силы тока

    Полная механическая энергия пружинного осциллятора Е равна сумме потенциальной и кинетической энергий:

    Энергия колебаний. Аналогично, полная электромагнитная энергия колебательного контура равна сумме энергий электрического поля в конденсаторе и магнитного поля в катушке:

    Из сопоставления формул (1) и (2) следует, что аналогом жесткости к пружинного осциллятора в колебательном контуре служит величина обратная емкости конденсатора С, а аналогом массы - индуктивность катушки

    Напомним, что в механической системе, энергия которой дается выражением (1), могут происходить собственные незатухающие гармонические колебания. Квадрат частоты таких колебаний равен отношению коэффициентов при квадратах смещения и скорости в выражении для энергии:

    Собственная частота. В колебательном контуре, электромагнитная энергия которого дается выражением (2), могут происходить собственные незатухающие гармонические колебания, квадрат частоты которых тоже, очевидно, равен отношению соответствующих коэффициентов (т. е. коэффициентов при квадратах заряда и силы тока):

    Из (4) следует выражение для периода колебаний, называемое формулой Томсона:

    При механических колебаниях зависимость смещения х от времени определяется косинусоидальной функцией, аргумент которой называется фазой колебаний:

    Амплитуда и начальная фаза. Амплитуда А и начальная фаза а определяются начальными условиями, т. е. значениями смещения и скорости при

    Аналогично, при электромагнитных собственных колебаниях в контуре заряд конденсатора зависит от времени по закону

    где частота определяется, в соответствии с (4), только свойствами самого контура, а амплитуда колебаний заряда и начальная фаза а, как и у механического осциллятора, определяется

    начальными условиями, т. е. значениями заряда конденсатора и силы тока при Таким образом, собственная частота не зависит от способа возбуждения колебаний, в то время как амплитуда и начальная фаза определяются именно условиями возбуждения.

    Энергетические превращения. Рассмотрим подробнее энергетические превращения при механических и электромагнитных колебаниях. На рис. 158 схематически изображены состояния механического и электромагнитного осцилляторов через промежутки времени в четверть периода

    Рис. 158. Энергетические превращения при механических и электромагнитных колебаниях

    Дважды за период колебаний энергия превращается из одного вида в другой и обратно. Полная энергия колебательного контура как и полная энергия механического осциллятора, в отсутствие диссипации остается неизменной. Чтобы убедиться в этом, нужно в формулу (2) подставить выражение (6) для и выражение для силы тока

    Используя формулу (4) для получаем

    Рис. 159. Графики зависимости от времени заряда конденсатора энергии электрического поля конденсатора и энергии магнитного поля в катушке

    Неизменная полная энергия совпадает с потенциальной энергией в моменты, когда заряд конденсатора максимален, и совпадает с энергией магнитного поля катушки - «кинетической» энергией - в моменты, когда заряд конденсатора обращается в нуль, а ток максимален. При взаимных превращениях два вида энергии совершают гармонические колебания с одинаковой амплитудой в противофазе друг с другом и с частотой относительно своего среднего значения . В этом легко убедиться как из рис. 158, так и с помощью формул тригонометрических функций половинного аргумента:

    Графики зависимости от времени заряда конденсатора энергии электрического поля и энергии магнитного поля показаны на рис. 159 для начальной фазы

    Количественные закономерности собственных электромагнитных колебаний можно установить непосредственно на основе законов для квазистационарных токов, не обращаясь к аналогии с механическими колебаниями.

    Уравнение для колебаний в контуре. Рассмотрим простейший колебательный контур, показанный на рис. 157. При обходе контура, например, против часовой стрелки, сумма напряжений на катушке индуктивности и конденсаторе в такой замкнутой последовательной цепи равна нулю:

    Напряжение на конденсаторе связано с зарядом пластины и с емкостью С соотношением Напряжение на индуктивности в любой момент времени равно по модулю и противоположно по знаку ЭДС самоиндукции, поэтому Ток в цепи равен скорости изменения заряда конденсатора: Подставляя силу тока в выражение для напряжения на катушке индуктивности и обозначая вторую производную заряда конденсатора по времени через

    Получим Теперь выражение (10) принимает вид

    Перепишем это уравнение иначе, вводя по определению :

    Уравнение (12) совпадает с уравнением гармонических колебаний механического осциллятора с собственной частотой Решение такого уравнения дается гармонической (синусоидальной) функцией времени (6) с произвольными значениями амплитуды и начальной фазы а. Отсюда следуют все приведенные выше результаты, касающиеся электромагнитных колебаний в контуре.

    Затухание электромагнитных колебаний. До сих пор обсуждались собственные колебания в идеализированной механической системе и идеализированном LC-контуре. Идеализация заключалась в пренебрежении трением в осцилляторе и электрическим сопротивлением в контуре. Только в этом случае система будет консервативной и энергия колебаний будет сохраняться.

    Рис. 160. Колебательный контур с сопротивлением

    Учет диссипации энергии колебаний в контуре можно провести аналогично тому, как это было сделано в случае механического осциллятора с трением. Наличие электрического сопротивления катушки и соединительных проводов неизбежно связано с выделением джоулевой теплоты. Как и раньше, это сопротивление можно рассматривать как самостоятельный элемент в электрической схеме колебательного контура, считая катушку и провода идеальными (рис. 160). При рассмотрении квазистационарного тока в таком контуре в уравнение (10) нужно добавить напряжение на сопротивлении

    Подставляя в получаем

    Вводя обозначения

    перепишем уравнение (14) в виде

    Уравнение (16) для имеет точно такой же вид, как и уравнение для при колебаниях механического осциллятора с

    трением, пропорциональным скорости (вязким трением). Поэтому при наличии электрического сопротивления в контуре электромагнитные колебания происходят по такому же закону, как и механические колебания осциллятора с вязким трением.

    Диссипация энергии колебаний. Как и при механических колебаниях, можно установить закон убывания со временем энергии собственных колебаний, применяя закон Джоуля-Ленца для подсчета выделяющейся теплоты:

    В результате в случае малого затухания для промежутков времени, много больших периода колебаний, скорость убывания энергии колебаний оказывается пропорциональной самой энергии:

    Решение уравнения (18) имеет вид

    Энергия собственных электромагнитных колебаний в контуре с сопротивлением убывает по экспоненциальному закону.

    Энергия колебаний пропорциональна квадрату их амплитуды. Для электромагнитных колебаний это следует, например, из (8). Поэтому амплитуда затухающих колебаний, в соответствии с (19), убывает по закону

    Время жизни колебаний. Как видно из (20), амплитуда колебаний убывает в раз за время равное независимо от начального значения амплитуды Это время х носит название времени жизни колебаний, хотя, как видно из (20), колебания формально продолжаются бесконечно долго. В действительности, конечно, о колебаниях имеет смысл говорить лишь до тех пор, пока их амплитуда превышает характерное значение уровня тепловых шумов в данной цепи. Поэтому фактически колебания в контуре «живут» конечное время, которое, однако, может в несколько раз превосходить введенное выше время жизни х.

    Часто бывает важно знать не само по себе время жизни колебаний х, а число полных колебаний, которое произойдет в контуре за это время х. Это число умноженное на называют добротностью контура.

    Строго говоря, затухающие колебания не являются периодическими. При малом затухании можно условно говорить о периоде, под которым понимают промежуток времени между двумя

    последонательными максимальными значениями заряда конденсатора (одинаковой полярности), либо максимальными значениями тока (одного направления).

    Затухание колебаний влияет на период, приводя к его возрастанию по сравнению с идеализированным случаем отсутствия затухания. При малом затухании увеличение периода колебаний очень незначительно. Однако при сильном затухании колебаний вообще может не быть: заряженный конденсатор будет разряжаться апериодически, т. е. без изменения направления тока в контуре. Так будет при т. е. при

    Точное решение. Сформулированные выше закономерности затухающих колебаний следуют из точного решения дифференциального уравнения (16). Непосредственной подстановкой можно убедиться, что оно имеет вид

    где - произвольные постоянные, значения которых определяются из начальных условий. При малом затухании множитель при косинусе можно рассматривать как медленно меняющуюся амплитуду колебаний.

    Задача

    Перезарядка конденсаторов через катушку индуктивности. В цепи, схема которой показана на рис. 161, заряд верхнего конденсатора равен а нижний не заряжен. В момент ключ замыкают. Найти зависимость от времени заряда верхнего конденсатора и тока в катушке.

    Рис. 161. В начальный момент времени заряжен только один конденсатор

    Рис. 162. Заряды конденсаторов и ток в контуре после замыкания ключа

    Рис. 163. Механическая аналогия для электрической цепи, показанной на рис. 162

    Решение. После замыкания ключа в цепи возникают колебания: верхний конденсатор начинает разряжаться через катушку, заряжая при этом нижний; затем все происходит в обратном направлении. Пусть, например, при положительно заряжена верхняя обкладка конденсатора. Тогда

    спустя малый промежуток времени знаки зарядов обкладок конденсаторов и направление тока будут такими, как показано на рис. 162. Обозначим через заряды тех обкладок верхнего и нижнего конденсаторов, которые соединены между собой через катушку индуктивности. На основании закона сохранения электрического заряда

    Сумма напряжений на всех элементах замкнутого контура в каждый момент времени равна нулю:

    Знак напряжения на конденсаторе соответствует распределению зарядов на рис. 162. и указанному направлению тока. Выражение для тока через катушку можно записать в любом из двух видов:

    Исключим из уравнения помощью соотношений (22) и (24):

    Вводя обозначения

    перепишем (25) в следующем виде:

    Если вместо ввести функцию

    и учесть, что то (27) принимает вид

    Это обычное уравнение незатухающих гармонических колебаний, которое имеет решение

    где и - произвольные постоянные.

    Возвращаясь от функции получим для зависимости от времени заряда верхнего конденсатора следующее выражение:

    Для определения постоянных и а учтем, что в начальный момент заряд а ток Для силы тока из (24) и (31) имеем

    Поскольку отсюда следует, что Подставляя теперь в и учитывая, что получаем

    Итак, выражения для заряда и силы тока имеют вид

    Характер осцилляций заряда и тока особенно нагляден при одинаковых значениях емкостей конденсаторов . В этом случае

    Заряд верхнего конденсатора осциллирует с амплитудой около среднего значения, равного За половину периода колебаний он уменьшается от максимального значения в начальный момент до нуля, когда весь заряд оказывается на нижнем конденсаторе.

    Выражение (26) для частоты колебаний разумеется, можно было написать сразу, поскольку в рассматриваемом контуре конденсаторы соединены последовательно. Однако написать выражения (34) непосредственно затруднительно, так как при таких начальных условиях нельзя входящие в контур конденсаторы заменить одним эквивалентным.

    Наглядное представление о происходящих здесь процессах дает механический аналог данной электрической цепи, показанный на рис. 163. Одинаковые пружины соответствуют случаю конденсаторов одинаковой емкости. В начальный момент левая пружина сжата, что соответствует заряженному конденсатору, а правая находится в недеформированном состоянии, так как аналогом заряда конденсатора здесь служит степень деформации пружины. При прохождении через среднее положение обе пружины частично сжаты, а в крайнем правом положении левая пружина недеформирована, а правая сжата так же, как левая в начальный момент, что соответствует полному перетеканию заряда с одного конденсатора на другой. Хотя шар совершает обычные гармонические колебания около положения равновесия, деформация каждой из пружин описывается функцией, среднее значение которой отлично от нуля.

    В отличие от колебательного контура с одним конденсатором, где при колебаниях происходит повторяющаяся его полпая перезарядка, в рассмотренной системе первоначально заряженный конденсатор полностью не перезаряжается. Например, при его заряд уменьшается до нуля, а затем снова восстанавливается в той же полярности. В остальном эти колебания не отличаются от гармонических колебаний в обычном контуре. Энергия этих колебаний сохраняется, если, разумеется, можно пренебречь сопротивлением катушки и соединительных проводов.

    Поясните, почему из сопоставления формул (1) и (2) для механической и электромагнитной энергий сделан вывод о том, что аналогом жесткости к является а аналогом массы индуктивность а не наоборот.

    Приведите обоснование вывода выражения (4) для собственной частоты электромагнитных колебаний в контуре из аналогии с механическим пружинным осциллятором.

    Гармонические колебания в -контуре характеризуются амплитудой, частотой, периодом, фазой колебаний, начальной фазой. Какие из этих величин определяются свойствами самого колебательного контура, а какие зависят от способа возбуждения колебаний?

    Докажите, что средние значения электрической и магнитной энергий при собственных колебаниях в контуре равны между собой и составляют половину полной электромагнитной энергии колебаний.

    Как применить законы квазистационарных явлений в электрической цепи для вывода дифференциального уравнения (12) гармонических колебаний в -контуре?

    Какому дифференциальному уравнению удовлетворяет сила тока в LC-контуре?

    Проведите вывод уравнения для скорости убывания энергии колебаний при малом затухании аналогично тому, как это было сделано для механического осциллятора с трением, пропорциональным скорости, и покажите, что для промежутков времени, значительно превосходящих период колебаний, это убывание происходит по экспоненциальному закону. Какой смысл имеет использованный здесь термин «малое затухание»?

    Покажите, что функция даваемая формулой (21), удовлетворяет уравнению (16) при любых значениях и а.

    Рассмотрите механическую систему, показанную на рис. 163, и найдите зависимость от времени деформации левой пружины и скорости массивного тела.

    Контур без сопротивления с неизбежными потерями. В рассмотренной выше задаче, несмотря на не совсем обычные начальные условия для зарядов на конденсаторах, можно было применить обычные уравнения для электрических цепей, поскольку там были выполнены условия квазистационарности протекающих процессов. А вот в цепи, схема которой показана на рис. 164, при формальном внешнем сходстве со схемой на рис. 162, условия квазистационарности не выполняются, если в начальный момент один конденсатор заряжен, а второй - нет.

    Обсудим подробнее причины, по которым здесь нарушаются условия квазистационарности. Сразу после замыкания

    Рис. 164. Электрическая цепь, для которой не выполняются условия квазистационарности

    ключа все процессы разыгрываются только в соединенных между собой конденсаторах, так как нарастание тока через катушку индуктивности происходит сравнительно медленно и поначалу ответвлением тока в катушку можно пренебречь.

    При замыкании ключа возникают быстрые затухающие колебания в контуре, состоящем из конденсаторов и соединяющих их проводов. Период таких колебаний очень мал, так как мала индуктивность соединительных проводов. В результате этих колебаний заряд на пластинах конденсаторов перераспределяется, после чего два конденсатора можно рассматривать как один. Но в первый момент этого делать нельзя, ибо вместе с перераспределением зарядов происходит и перераспределение энергии, часть которой переходит в теплоту.

    После затухания быстрых колебаний в системе происходят колебания, как в контуре с одним конденсатором емкости заряд которого в начальный момент равен первоначальному заряду конденсатора Условием справедливости приведенного рассуждения является малость индуктивности соединительных проводов по сравнению с индуктивностью катушки.

    Как и в рассмотренной задаче, полезно и здесь найти механическую аналогию. Если там две пружины, соответствующие конденсаторам, были расположены по обе стороны массивного тела, то здесь они должны быть расположены по одну сторону от него, так чтобы колебания одной из них могли передаваться другой при неподвижном теле. Вместо двух пружин можно взять одну, но только в начальный момент она должна быть деформирована неоднородно.

    Захватим пружину за середину и растянем ее левую половину на некоторое расстояние Вторая половина пружины останется в недеформированном состоянии, так что груз в начальный момент смещен из положения равновесия вправо на расстояние и покоится. Затем отпустим пружину. К каким особенностям приведет то обстоятельство, что в начальный момент пружина деформирована неоднородно? ибо, как нетрудно сообразить, жесткость «половины» пружины равна Если масса пружины мала по сравнению с массой шара, частота собственных колебаний пружины как протяженной системы много больше частоты колебаний шара на пружине. Эти «быстрые» колебания затухнут за время, составляющее малую долю периода колебаний шара. После затухания быстрых колебаний натяжение в пружине перераспределяется, а смещение груза практически остается равным так как груз за это время не успевает заметно сдвинуться. Деформация пружины становится однородной, а энергия системы равной

    Таким образом, роль быстрых колебаний пружины свелась к тому, что запас энергии системы уменьшился до того значения, которое соответствует однородной начальной деформации пружины. Ясно, что дальнейшие процессы в системе не отличаются от случая однородной начальной деформации. Зависимость смещения груза от времени выражается той же самой формулой (36).

    В рассмотренном примере в результате быстрых колебаний превратилась во внутреннюю энергию (в теплоту) половина первоначального запаса механической энергии. Ясно, что, подвергая начальной деформации не половину, а произвольную часть пружины, можно превратить во внутреннюю энергию любую долю первоначального запаса механической энергии. Но во всех случаях энергия колебаний груза на пружине соответствует запасу энергии при той же однородной начальной деформации пружины.

    В электрической цепи в результате затухающих быстрых колебаний энергия заряженного конденсатора частично выделяется в виде джоулевой теплоты в соединительных проводах. При равных емкостях это будет половина первоначального запаса энергии. Вторая половина остается в форме энергии сравнительно медленных электромагнитных колебаний в контуре, состоящем из катушки и двух соединенных параллельно конденсаторов С, и

    Таким образом, в этой системе принципиально недопустима идеализация, при которой пренебрегается диссипацией энергии колебаний. Причина этого в том, что здесь возможны быстрые колебания, не затрагивающие катушки индуктивности или массивного тела в аналогичной механической системе.

    Колебательный контур с нелинейными элементами. При изучении механических колебаний мы видели, что колебания далеко не всегда бывают гармоническими. Гармонические колебания - это характерное свойство линейных систем, в которых

    возвращающая сила пропорциональна отклонению от положения равновесия, а потенциальная энергия - квадрату отклонения. Реальные механические системы этими свойствами, как правило, не обладают, и колебания в них можно считать гармоническими лишь при малых отклонениях от положения равновесия.

    В случае электромагнитных колебаний в контуре может сложиться впечатление, что мы имеем дело с идеальными системами, в которых колебания строго гармонические. Однако это верно лишь до тех пор, пока емкость конденсатора и индуктивность катушки можно считать постоянными, т. е. не зависящими от заряда и тока. Конденсатор с диэлектриком и катушка с сердечником, строго говоря, представляют собой нелинейные элементы. Когда конденсатор заполнен сегнетоэлектриком, т. е. веществом, диэлектрическая проницаемость которого сильно зависит от приложенного электрического поля, емкость конденсатора уже нельзя считать постоянной. Аналогично, индуктивность катушки с ферромагнитным сердечником зависит от силы тока, так как ферромагнетик обладает свойством магнитного насыщения.

    Если в механических колебательных системах массу, как правило, можно считать постоянной и нелинейность возникает только из-за нелинейного характера действующей силы, то в электромагнитном колебательном контуре нелинейность может возникать как за счет конденсатора (аналога упругой пружины), так и за счет катушки индуктивности (аналога массы).

    Почему для колебательного контура с двумя параллельными конденсаторами (рис. 164) неприменима идеализация, в которой система считается консервативной?

    Почему быстрые колебания, приводящие к диссипации энергии колебаний в контуре на рис. 164, не возникали в контуре с двумя последовательными конденсаторами, показанными на рис. 162?

    Какие причины могут приводить к несинусоидальности электромагнитных колебаний в контуре?

    Колебательный контур: принцип работы, виды контуров, параметры и характеристики

    Не затухающие колебания.

    Принцип действия колебательного контура

    Заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.

    Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности. Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

    Важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

    Собственная частота колебательного контура

    Частота свободных колебаний тока и напряжения, возникающих в колебательном контуре.

    T = 2*п*(L*C)1/2. T - период электромагнитных колебаний, L и C - соответственно, индуктивность катушки колебательного контура и ёмкость элементов контура, п - число пи.

    Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Такие устройства называются автоколебательными системами.

    Любая автоколебательная система состоит из следующих четырех частей

    1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан - некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь - управление работой клапана за счет процессов в самой колебательной системе.

    Генератор на транзисторе - пример автоколебательной системы. На рисунке ниже приведена упрощенная схема такого генератора, в котором роль "клапана" играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.

    При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды.

    Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.

    Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю.

    Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура - это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре - это амплитудное условие самовозбуждения.

    Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.

    Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.

    Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы - напряжением источника, расстоянием между Lсв и L, сопротивлением контура.