Свинец и висмут – самые тяжелые стабильные элементы. Трансурановые элементы

Ученые из Университета Нового Южного Уэльса (Австралия) и Майнцского университета (Германия) предположили, что одна из самых необычных (среди известных астрономам) звезд содержит химические элементы из острова стабильности. Это элементы в самом конце таблицы Менделеева, от соседей слева их отличает большее время жизни. Исследование опубликовано в библиотеке электронных препринтов arXiv.org, о его результатах и стабильных сверхтяжелых химических элементах рассказывает .

Звезда HD 101065 открыта в 1961 году польско-австралийским астрономом Антонином Пшибыльским. Она находится на расстоянии около 400 световых лет от Земли в созвездии Центавра. Вероятнее всего, HD 101065 легче Солнца и представляет собой звезду главной последовательности, субгиганта. Особенность звезды Пшибыльского - крайне малое содержание в атмосфере железа и никеля. В то же время звезда богата тяжелыми элементами, в том числе стронцием, цезием, торием, иттербием и ураном.

Звезда Пшибыльского - единственная, в которой обнаружены короткоживущие радиоактивные элементы, актиноиды, с атомным номером (числом протонов в ядре) от 89 до 103: актиний, плутоний, америций и эйнштейний. На HD 101065 похожа HD 25354, но наличие там америция и кюрия вызывает сомнения.

Механизм образования сверхтяжелых элементов на звезде Пшибыльского до сих пор не вполне понятен . Предполагалось, что HD 101065 вместе с нейтронной звездой образует двойную систему - частицы со второй падают на первую, провоцируя реакции синтеза тяжелых элементов. Эта гипотеза пока не подтверждена, хотя не исключено, что на расстоянии около тысячи астрономических единиц от HD 101065 располагается тусклый спутник.

Фото: N. Dautel / Globallookpress.com

Сильнее всего HD 101065 похожа на Ap-звезды, пекулярные (peculiar) светила спектрального класса A, в чьем спектре усилены линии редкоземельных металлов. У них сильное магнитное поле, тяжелые элементы в их атмосферу поступают из недр. От остальных Ap-звезд HD 101065 отличается кратковременными изменениями в кривой блеска, что позволило включить ее в отдельную группу RoAp-звезд (Rapidly oscillating Ap stars).

Вероятно, попытки ученых вписать HD 101065 в существующую классификацию звезд когда-нибудь увенчаются успехом. Пока звезда Пшибыльского считается одной из самых необычных - это дает основания подозревать у нее ряд необычных свойств. В частности, в последней работе, посвященной HD 101065, австралийские и немецкие исследователи допустили, что в звезде Пшибыльского рождаются химические элементы, относящиеся к острову стабильности.

Ученые исходили из оболочечной модели ядра и ее расширений. Модель связывает устойчивость атомного ядра с заполнением энергетических уровней оболочек, которые, по аналогии с электронными оболочками атома, образуют ядро. Каждые нейтрон и протон находятся на определенной оболочке (расстоянии от центра атома или энергетическом уровне) и движутся независимо друг от друга в некотором самосогласованном поле.

Считается, что чем более заполнены энергетические уровни ядра, тем устойчивее изотоп. Модель хорошо объясняет устойчивость атомных ядер, спины и магнитные моменты, однако применима лишь к невозбужденным или легким и средним по массовому числу ядрам.

В соответствии с оболочечной моделью, ядра с целиком заполненными энергетическими оболочками характеризуются высокой стабильностью. Такие элементы и образуют «остров стабильности». Начинается он с изотопов с порядковыми номерами 114 и 126, соответствующими магическому и дважды магическому числам.

У ядер с магическим числом нуклонов (протонов и нейтронов) наиболее сильная энергия связи. В таблице нуклидов они размещены следующим образом: по горизонтали слева направо по возрастанию указано число протонов, а по вертикали сверху вниз - число нейтронов. У дважды магического ядра количество протонов и нейтронов равно какому-либо магическому числу.

Период полураспада изотопов флеровия (114-й элемент), полученных в Дубне, - до 2,7 секунды. Согласно теории, должен существовать изотоп флеровий-298 c магическим числом нейтронов N=184 и временем жизни порядка десяти миллионов лет. Синтезировать такое ядро пока не удалось. Для сравнения, период полураспада соседних элементов с числами протонов в ядре, равными 113 и 115, - до 19,6 секунды (для нихония-286) и 0,156 секунды (для московия-289) соответственно.

Авторы публикации на arXiv.org считают, что наличие в атмосфере HD 101065 актиноидов говорит в пользу того, что там же имеются и химические элементы из острова стабильности. Актиноиды в таком случае - продукт распада стабильных сверхтяжелых элементов. Ученые предлагают провести поиск в спектрах HD 101065 следов нобелия, лоуренсия, нихония, флеровия и описывают конкретные спектры, которые могут производить устойчивые изотопы.

В настоящее время новые элементы таблицы Менделеева синтезируются в России, США, Японии и Германии. На Земле трансурановые элементы в естественной среде не обнаружены. Звезда HD 101065, возможно, открывает новые возможности для проверки теорий физиков-ядерщиков, предполагающих существование острова стабильности.

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели предсказывают исчезновение барьера деления для ядер с Z2/A ≈ 46 (примерно 112 элемент). В проблеме синтеза сверхтяжелых ядер следует выделить два круга вопросов.

  1. Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N. Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  2. Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения компаунд-ядра и каналы снятия возбуждения?

Так как образование сверхтяжелых ядер происходит в результате полного слияния ядра мишени и налетающей частицы необходимо создание теоретических моделей, описывающих динамику процесса слияния двух сталкивающихся ядер в компаунд-ядро.
Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z,N = 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным модам радиоактивного распада. Это явление объясняется в рамках оболочечной модели − магические числа соответствуют заполненным оболочкам. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области N-Z-диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. В работе на основе расчетов, выполненных с использованием потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности ядер следует ожидать для ядра с Z = 114, то есть следующая заполненная протонная оболочка соответствует Z = 114, заполненная нейтронная оболочка соответствует числу N ~ 184. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом в этой области ядер (Z = 114, N ~ 184) следует искать Остров Стабильности. Этот же результат был независимо получен в работе .
Ядра с Z = 101–109 были открыты до 1986 года и получили названия: 101 - Md (Menelevium), 102 - No (Nobelium), 103 - Lr (Lawrencium), 104 - Rf (Rutherfordium, 106 - Sg (Seaborgium), 107 - Ns (Nielsborium), 108 - Hs (Hassium), 109 - Mt (Meitnerium). Учитывая заслуги исследователей из Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db). Этот элемент ранее назывался Ha (Hannium).


Рис. 12.3. Цепочки распадов изотопов Ds (Z = 110), Rg (Z = 111), Cn (Z = 112).

Новый этап в исследовании сверхтяжелых ядер начался в 1994 году, когда была существенно повышена эффективность регистрации и усовершенствована методика наблюдения сверхтяжелых ядер. Как результат были обнаружены изотопы Ds (Z = 110), Rg (Z = 111) и Cn (Z = 112) .
Для получения сверхтяжелых ядер использовались ускоренные пучки 50 Ti, 51 V, 58 Fe, 62 Ni, 64 Ni, 70 Zn и 82 Se. В качестве мишеней применялись изотопы 208 Pb и 209 Bi. Различные изотопы 110 элемента были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флерова с помощью реакции 244 Pu(34 S,5n) 272 110 и в GSI (Дармштадт) в реакции 208 Pb(62 Ni,n) 269 110. Изотопы 269 Ds, 271 Ds, 272 Rg и 277 Cn регистрировались по их цепочкам распада (рис. 12.3).
Большую роль в получении сверхтяжелых элементов играют теоретические модели, с помощью которых рассчитываются ожидаемые характеристики химических элементов, реакции, в которых они могут образовываться.
На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 12.4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 12.4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на
10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 12.5б. Наиболее устойчивое ядро расположено в области Z = 114 и N = 184 (T 1/2 = 10 15 лет).
Стабильные по отношению к β-распаду ядра показаны на рис. 12.4в темными точками. На рис. 12.4г приведены полные периоды полураспада, которые для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют «остров стабильности». Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к
α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.


Рис. 12.4. Периоды полураспада, вычисленные для четно-четных сверхтяжелых ядер (числа обозначают периоды полураспада в годах):
а − относительно спонтанного деления, б − α-распада, в − е-захвата и β-распада, г − для всех процессов распада

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 12.5, 12.6 . На рис. 12.5 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 12.5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 12.6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1–1 мс). Так например, для ядра 292 Ds предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента Z = 112 Cn (коперниций) был изотоп 277 Cn, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 Cn был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени − 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 Cn. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом, видно, что увеличение числа нейтронов в изотопе 283 Cn по сравнению с изотопом 277 Cn на 6 единиц увеличивает время жизни на 5 порядков.
На рис. 12.7 взятом из работы экспериментально измеренные периоды α-распада сравниваются с результатами теоретических расчетов на основе модели жидкой капли без учета оболочечной структуры ядер. Видно, что для всех тяжелых ядер, за исключением лёгких изотопов урана, оболочечные эффекты увеличивают период полураспада на 2–5 порядков для большинства ядер. Ещё более сильное влияние оболочечная структура ядра оказывает на периоды полураспада относительно спонтанного деления. Увеличение периода полураспада для изотопов Pu составляет несколько порядков и увеличивается для изотопа 260 Sg.

Рис. 12.7. Экспериментально измеренные (● exp) и теоретически рассчитанные (○ Y) периоды полураспада трансурановых элементов на основе модели жидкой капли без учета оболочечной структуры ядра. Верхний рисунок − периоды полураспада для α-распада, нижний рисунок − периоды полураспада для спонтанного деления.

На рис. 12.8 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 Hs и 267 Sg. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 Sg, 262 Bh, 205 Hs, 271,273 Ds ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 12.9 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.


Рис.12.10. Схема потенциалов при слиянии 64 Ni и 208 Pb.

Реакции слияния с испусканием минимального числа нейтронов (1–2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 12.10 показан потенциал слияния для ядер в реакции 64 Ni + 208 Pb → 272 Ds. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 –21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования элементов Z = 102–112 в реакциях холодного синтеза.
Таким образом, прогресс в синтезе трансурановых элементов Z = 107–112 был связан с «открытием» реакций холодного синтеза, в которых магические изотопы 208 Pb и 209 Bi облучались ионами с Z = 22–30. Образующееся в реакции холодного синтеза ядро нагрето слабо и охлаждается в результате испускания одного нейтрона. Так впервые были получены изотопы химических элементов с Z = 107–112. Эти химические элементы были получены в период 1978–1998 гг. в Германии на специально построенном ускорителе исследовательского центра GSI в Дармштадте. Однако, дальнейшее продвижение − к более тяжелым ядрам − таким методом оказывается затруднительным из-за роста величины потенциаль­ного барьера между сталкивающимися ядрами. Поэтому в Дубне был реали­зован другой метод получения сверхтяжелых ядер. В качестве мишеней использовались наиболее тяжелые изотопы искусственно полученных химических элементов плутония Pu (Z = 94), америция Am (Z = 95), кюрия Cm (Z = 96), берклия Bk (Z = 97) и калифорния Cf (Z = 98). В качестве ускоренных ионов был выбран изотоп кальция 48 Ca (Z = 20). Схематический вид сепаратора и детектора ядер отдачи показан на рис. 12.11.


Рис. 12.11. Схематический вид сепаратора ядер отдачи, на котором проводятся эксперименты по синтезу сверхтяжелых элементов в Дубне.

Магнитный сепаратор ядер отдачи уменьшает фон побочных продуктов реакции в 10 5 –10 7 раз. Регистрация продуктов реакции осуществлялась с помощью позиционно-чувствительного кремниевого детектора. Измерялись энергия, координаты и время пролета ядер отдачи. После остановки все последующие сигналы от регистрируемых частиц распада должны исходить из точки остановки имплантированного ядра. Созданная методика позволяла с высокой степенью надёжности (≈ 100%) установить связь между остановившимся в детекторе сверхтяжелым ядром и продуктами его распада. С помощью такой методики были надёжно идентифицированы сверхтяжелые элементы с
Z = 110–118 (табл. 12.2).
В таблице 12.2 приведены характеристики сверхтяжелых химических элементов с Z = 110–118: массовое число A, m − наличие изомерного состояния в изотопе с массовым числом A, спин-четность J P , энергия связи ядра E св, удельная энергия связи ε, энергии отделения нейтрона B n и протона B p , период полураспада T 1/2 и основные каналы распада.
Химические элементы Z > 112 пока не имеют названий и приводятся в принятых международных обозначениях.

Таблица 12.2

Характеристики сверхтяжелых химических элементов Z = 110–118

XX-A-m J P Масса
ядра,
MэВ
E св,
MэВ
ε,
MэВ
B n ,
MэВ
B p ,
MэВ
T 1/2 Моды распада
Z = 110 − дармштадтий
Ds-267 248787.19 1934.5 7.2 0.7 2.8 ас α ≈100%
Ds-268 0 + 249718.08 1943.2 7.3 8.7 1.3 100 ас α ≈
Ds-269 250650.86 1950.0 7.2 6.8 1.3 179 ас α 100%
Ds-270 0 + 251581.97 1958.4 7.3 8.5 0.10 мс α ≈100%, SF < 0.20%
Ds-270-m 251583.07 1957.3 7.2 6.0 мс α >70%, IT ≤ 30%
Ds-271 252514.72 1965.2 7.3 6.8 2.2 1.63 мс α ≈100%
Ds-271-m 252514.72 1965.2 7.3 69 мс IT?, α >0%
Ds-272 0 + 253446.46 1973.1 7.3 7.8 2.5 1 с SF
Ds-273 254380.32 1978.8 7.2 5.7 2.5 0.17 мс α ≈100%
Ds-274 0 + 255312.45 1986.2 7.2 7.4 3.0 2 с α?,
SF?
Ds-275 256246.44 1991.8 7.2 5.6 2.9 2 с α?
Ds-276 0 + 257178.73 1999.1 7.2 7.3 3.2 5 с SF?,
α?
Ds-277 258112.63 2004.7 7.2 5.7 3.1 5 с α?
Ds-278 0 + 259044.92 2012.0 7.2 7.3 10 с SF?,
α?
Ds-279 259978.62 2017.9 7.2 5.9 0.18 с SF ≈90%,
α ≈10%
Ds-281 261844.60 2031.0 7.2 9.6 с SF ≈100%
Z =111 − рентгений
Rg-272 253452.75 1965.5 7.2 0.2 3.8 мс α ≈100%
Rg-273 254384.34 1973.5 7.2 8.0 0.4 5 мс α?
Rg-274 255317.74 1979.6 7.2 6.2 0.9 6.4 мс α ≈100%
Rg-275 256249.53 1987.4 7.2 7.8 1.2 10 мс α?
Rg-276 257183.22 1993.3 7.2 5.9 1.5 100 мс SF?,
α?
Rg-277 258115.72 2000.4 7.2 7.1 1.3 1 с α?,
SF?
Rg-278 259049.11 2006.5 7.2 6.2 1.8 4.2 мс α ≈100%,
SF
Rg-279 259981.41 2013.8 7.2 7.3 1.8 0.17 с α ≈100%
Rg-280 260914.80 2020.0 7.2 6.2 2.1 3.6 с α ≈100%
Rg-281 261847.09 2027.2 7.2 7.3 1 м α?, SF?
Rg-282 262780.59 2033.3 7.2 6.1 2.3 4 м SF?, α?
Rg-283 263712.98 2040.5 7.2 7.2 10 м SF?, α?
Z = 112 − коперниций
Cn-277 258119.32 1995.5 7.2 2.2 0.69 мс α ≈100%
Cn-278 0 + 259051.20 2003.1 7.2 7.7 2.8 10 мс SF?, α?
Cn -279 259984.69 2009.2 7.2 6.1 2.7 0.1 с SF?, α?
Cn -280 0 + 260916.69 2016.8 7.2 7.6 3.0 1 с α?, SF?
Cn -282 0 + 262782.18 2030.4 7.2 3.2 0.50 мс SF ≈100%
Cn -283 263715.57 2036.6 7.2 6.2 3.3 4.0 с α ≥90%, SF ≤10%
Cn -284 0 + 264647.66 2044.1 7.2 7.5 3.6 101 мс SF ≈100%
Cn -285 265580.76 2050.5 7.2 6.5 34 с α ≈100%
Z = 113
Uut-278 0.24 мс α 100%
Uut-283 263719.46 2031.4 7.2 1.0 100 мс α 100%
Uut-284 264652.45 2038.0 7.2 6.6 1.4 0.48 с α ≈100%
Uut-285 265584.55 2045.5 7.2 7.5 1.4 2 м α?, SF?
Uut-286 266517.64 2051.9 7.2 6.5 1.4 5 м α?, SF?
Uut-287 267449.64 2059.5 7.2 7.6 20 м α?, SF?
Z = 114
Uuq-286 0 + 266520.33 2048.0 7.2 2.5 0.16 с SF ≈60%, α ≈40%
Uuq-287 267453.42 2054.4 7.2 6.5 2.5 0.51 с α ≈100%
Uuq-288 0 + 268385.02 2062.4 7.2 8.0 2.9 0.80 с α ≈100%
Uuq-289 269317.91 2069.1 7.2 6.7 2.7 с α ≈100%
Z = 115
Uup-287 267458.11 2048.4 7.1 0.5 32 мс α 100%
Uup-288 268390.81 2055.3 7.1 6.9 0.9 87 мс α 100%
Uup-289 269322.50 2063.2 7.1 7.9 0.8 10 с SF?, α?
Uup-290 270255.30 2070.0 7.1 6.8 0.9 10 с SF?, α?
Uup-291 271187.09 2077.7 7.1 7.8 1 м α?, SF?
Z = 116
Uuh-290 0 + 270258.98 2065.0 7.1 1.8 15 мс α ≈100%
Uuh-291 271191.78 2071.7 7.1 6.8 1.8 6.3 мс α 100%
Uuh-292 0 + 272123.07 2080.0 7.1 8.3 2.3 18 мс α ≈100%
Uuh-293 53 мс α ≈100%
Z = 117
Uus-291 271197.37 2064.9 7.1 -0.1 10 мс SF?, α?
Uus-292 272129.76 2072.0 7.1 7.2 0.3 50 мс SF?, α?
Z = 118
Uuo-294 0 + 1.8 мс α ≈100%

На рис. 12.12 показаны все известные наиболее тяжелые изотопы с Z = 110–118, полученные в реакциях синтеза с указанием экспериментально измеренного периода полураспада. Здесь же показано теоретически предсказанное положение острова стабильности (Z = 114, N = 184).


Рис. 12.12. N-Z-диаграмма элементов Z = 110–118.

Полученные результаты однозначно указывают на рост стабильности изотопов при приближении к дважды магическому ядру (Z = 114, N = 184). Добавление к ядрам с Z = 110 и 112 7–8 нейтронов увеличивает период полураспада от 2.8 ас (Ds-267) до ≈ 10 с (Ds-168, Ds 271). Период полураспада T 1/2 (272 Rg, 273 Rg) ≈ 4–5 мс увеличивается до T 1/2 (283 Rg) ≈ 10 мин. Наиболее тяжелые изотопы элементов Z = 110–112 содержат ≈ 170 нейтронов, что ещё далеко от магического числа N = 184. Все наиболее тяжелые изотопы с Z > 111 и N > 172 распадаются преимущественно в результате
α-распада, спонтанное деление – более редкий распад. Эти результаты находятся в хорошем согласии с теоретическими предсказаниями.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход изотопов с Z = 114 наблюдался в канале с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции 248 Cm + 48 Ca → 296 116, приведена на рис.12.13


Рис. 12.13. Схема распада ядра 296 116.

Изотоп 296 116 охлаждается в результате испускания четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
На рис. 12.14 приведена цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне. ER − энергия ядра отдачи, имплантированного в позиционно-чувствительный кремниевый детектор. Можно отметить хорошее совпадение в периодах полураспада и энергиях α-распадов в трёх экспериментах, что свидетельствует о надёжности метода идентификации сверхтяжелых элементов с помощью измерений спектров α-частиц.


Рис. 12.14. Цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне.

Самый тяжелый, полученный в лабораторных условиях элемент с Z = 118, был синтезирован в реакции

48 Ca + 249 Cf → 294 118 + 3n.

При энергии ионов вблизи кулоновского барьера наблюдалось три случая образования 118 элемента. Ядра 294 118 имплантировались в кремниевый детектор и наблюдалась цепочка последовательных α-распадов. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс.
На рис. 12.15 показана теоретически рассчитанная цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.


Рис. 12.15. Цепочка последовательных α-распадов изотопа 293 118.
Приведены средние времена жизни дочерних ядер, образующихся в результате α-распадов.

Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 12.16 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнению с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.


Рис. 12.16. Оценки сечений образования трансурановых элементов в реакциях 238 U с 248 Cm, 249 Cf и 254 Es

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако все попытки обнаружить Остров Стабильности пока не увенчались успехом. Поиск его интенсивно продолжается.
Оболочечная структура атомных ядер играет существенную роль в повышении стабильности сверхтяжелых ядер. Магические числа Z ≈ 114 и N ≈ 184, если они действительно существуют, могут привести к значительному повышению стабильности атомных ядер. Существенным является также то, что распад сверхтяжелых ядер будет происходить в результате α-распада, что важно для разработки экспериментальных методов детектирования и идентификации новых сверхтяжелых ядер.

You can comment here or .

ЧИКАГО, 17 февраля. Впервые удалось измерить массу элемента тяжелее урана – новый метод открывает путь к давно предсказанному «острову стабильности» устойчивых сверхтяжелых элементов, лежащему за пределами привычной Таблицы Менделеева.

Ядро урана включает 92 протона, это – самый тяжелый из известных нам элементов, встречающихся в природе. В искусственных условиях, конечно, синтезированы и более тяжелые, вплоть до 118-ти протонов. Все эти «тяжеловесы» крайне короткоживущи, они распадаются за считанные миллисекунды.

Но еще в середине ХХ века была теоретически предсказана возможность существования сверхтяжелых элементов, содержащих определенное соотношение протонов и нейтронов и имеющих срок жизни куда более долгий – десятилетия, а то и больше. С тех пор путь к этому «острову стабильности» стал одним из важнейших направлений ядерной физики. И вовсе не из чисто академического интереса. Сверхтяжелые стабильные элементы могли бы послужить отличным топливом для ядерных двигателей будущих космических миссий. Они должны, по расчетам, проявлять также необычные и полезные химические и физические свойства.

Однако до сих пор никто в точности не знает, где же мы должны наткнуться на этот остров. Одни расчеты показывают, что где-то в области с центром в 114 протонов на ядро, другие – между 120-ю и 126-ю протонами. Вычисления затрудняются тем, что ученые не имеют точного представления о том, как действуют сильные и слабые силы в «перенаселенных» ядрах таких элементов, удерживая их протоны и нейтроны вместе. Краткость существования полученных в лаборатории сверхтяжелых элементов не позволяет собрать достаточно экспериментальных данных.

Новый прорыв в этой области обещает недавняя работа команды немецких ученых во главе с Майклом Блоком, которым удалось найти способ прямого измерения массы частиц тяжелее урана. А поскольку масса и энергия связаны знаменитой эйнштейновской формулой E = mc2, определение массы атома позволяет (учтя дополнительные факторы) вычислить и силы, с которыми частицы в его ядре связаны друг с другом.

Для измерения массы атома ученые воспользовались устройством, которое называется ловушкой Пеннинга, где, упрощенно говоря, ионы удерживаются электромагнитным полем. Объектом измерений послужил нобелий, ядро которого включает 102 протона – на 10 больше, чем у урана. Как и прочие «искусственные» элементы, он получается столкновением несколько более легких элементов и является крайне короткоживущим (максимум 58 минут). Главной задачей, которую удалось решить немецким физикам, было найти способ замедлить атомы перед тем, как они попадут в ловушку, для чего ученые решили пропускать их предварительно через камеру, заполненную гелием.

Теперь, обладая методом, позволяющим «взвешивать» сверхтяжелые короткоживущие атомы, экспериментаторы могут точнее установить их параметры. А теоретики на базе этих данных – выбрать между конкурирующими моделями, предсказывающими положение «острова стабильности».

Метод позволяет двинуться существенно дальше по Периодической таблице, хотя на практике воспользоваться им для наиболее тяжелых из полученных элементов может быть не очень просто. Хотя бы потому, что синтез подобных великанов – уже сам по себе крайне непростой процесс. Если тот же нобелий можно с помощью подготовленного эксперимента получать с частотой, в среднем, 1 атом в секунду, то с более тяжелыми элементами, ядра которых содержат более 104 протонов, все гораздо дольше. Получение 1 атома может занять, к примеру, неделю.

Но если все пойдет хорошо, рано или поздно этот метод позволит заметить и обитателей «острова стабильности». Поскольку такие сверхтяжелые элементы обычно обнаруживаются по продуктам распада, а стабильные имеют слишком долгий период жизни, традиционные методы работы с атомами-тяжеловесами для этого не годятся

Сначала статья о том, что такое "остров стабильности".

Остров стабильности: российские ядерщики лидируют в гонке

Синтез сверхтяжелых элементов, составляющих так называемых "остров стабильности", - амбициозная задача современной физики, в решении которой российские ученые опережают весь мир.

3 июня 2011 года экспертная комиссия, в которую вошли специалисты Международных союзов теоретической и прикладной химии (IUPAC) и физики (IUPAP), официально признала открытие 114-го и 116-го элементов таблицы Менделеева. Приоритет открытия отдан группе физиков под руководством академика РАН Юрия Оганесяна из Объединенного института ядерных исследований при содействии американских коллег из Ливероморской национальной лаборатории им. Лоуренса.

Академик РАН Юрий Оганесян, руководитель лаборатории ядерных реакций в ОИЯИ

Новые элементы стали самыми тяжелыми из тех, что включены в периодическую таблицу Менделеева, и получили временные названия унунквидия и унунгексия, образованные по порядковому номеру в таблице. Российские физики предложили назвать элементы "флеровием" в честь Георгия Флерова - советского физика-ядерщика, специалиста в области деления ядер и синтеза новых элементов, и "московием" в честь Московской области. Помимо 114-го и 116-го элементов в ОИЯИ ранее были синтезированы химические элементы с порядковыми номерами 104, 113, 115, 117 и 118. А 105-му элементу таблицы в честь признания вклада дубненских физиков в современную науку присвоено название "дубний".

Элементы, которых нет в природе

В настоящее время весь окружающий нас мир состоит из 83 химических элементов, от водорода (Z=1, Z — количество протонов в ядре) до урана (Z=92), время жизни которых больше времени жизни солнечной системы (4,5 миллиарда лет). Более тяжелые элементы, появившиеся во время нуклеосинтеза незадолго после Большого взрыва, уже распались и не дожили до наших дней. Уран, период полураспада которого составляет около 4,5×10 8 лет, еще распадется и радиоактивен. Однако в середине прошлого века исследователи научились получать элементы, которых нет в природе. В качестве примера такого элемента можно привести вырабатываемый в ядерных реакторах плутоний (Z=94), который производится сотнями тонн и является одним из мощнейших источников энергии. Период полураспада плутония существенно меньше, чем период полураспада урана, но все же достаточно велик, чтобы предположить возможность существования более тяжелых химических элементов. Концепция атома, состоящего из ядра, несущего в себе положительный заряд и основную массу, и электронных орбиталей, предполагает возможность существования элементов с порядковым номером до Z=170. Но на самом деле за счет нестабильности процессов, происходящих в самом ядре, граница существования тяжелых элементов намечается значительно раньше. В природе стабильные образования (ядра элементов, состоящие из разного числа протонов и нейтронов) встречаются только до свинца и висмута, затем следует небольшой полуостров, включающий в себя торий и уран, обнаруженные на Земле. Но как только порядковый номер элемента превышает номер урана, время его жизни резко уменьшается. Например, ядро 100-го элемента в 20 раз менее стабильно, чем ядро урана, а в дальнейшем эта нестабильность только усиливается из-за спонтанного деления ядер.

"Остров стабильности"

Эффект спонтанного деления был объяснен Нильсом Бором. Согласно его теории, ядро представляет собой каплю заряженной жидкости, то есть некую материю, не имеющую собственной внутренней структуры. Чем больше количество протонов в ядре, тем сильнее влияние кулоновских сил, под действием которых капля деформируется и делится на части. Такая модель предсказывает возможность существования элементов до 104-го - 106-го порядковых номеров. Однако в 60-х годах в Лаборатории ядерных реакций Объединенного института ядерных исследований был проведен ряд экспериментов по изучению свойств деления ядер урана, результаты которых невозможно было объяснить при помощи теории Бора. Оказалось, что ядро не является полным аналогом капли заряженной жидкости, а имеет внутреннюю

структуру. Причем чем тяжелее ядро, тем сильнее становится выражено влияние этой структуры, и картина распада будет выглядеть совсем не так, как прогнозирует модель капли жидкости. Так возникла гипотеза о существовании некой области стабильных сверхтяжелых ядер, далеких от известных сегодня элементов. Область получила название "острова стабильности", и после предсказания ее существования крупнейшие лаборатории США, Франции и Германии начали ряд экспериментов для подтверждения теории. Однако их попытки не увенчались успехом. И только эксперименты на дубненском циклотроне, результатом которых стало открытие 114-го и 116-го элементов, дают возможность утверждать, что область стабильности сверхтяжелых ядер действительно существует.

На рисунке ниже показана карта тяжелых нуклидов. Периоды полураспада ядер представлены различным цветом (правая шкала). Черные квадраты - изотопы стабильных элементов, обнаруженных в земной коре (время полураспада более 10 9 лет). Темно-синий цвет - "море нестабильности", где ядра живут менее 10 −6 секунды. "Острова стабильности", следующие за "полуостровом" тория, урана и трансурановых элементов - предсказания микроскопической теории ядра. Два ядра с атомными номерам 112 и 116, полученные в различных ядерных реакциях и их последовательный распад, показывают, насколько близко можно подойти к "островам стабильности" при искусственном синтезе сверхтяжелых элементов.

Карта тяжелых нуклидов

Для того чтобы синтезировать стабильное тяжелое ядро, необходимо внедрить в него как можно больше нейтронов, поскольку именно нейтроны являются тем "клеем", который удерживает нуклоны в составе ядра. Первой идеей стало облучение некого исходного вещества потоком нейтронов от реактора. Но с помощью этого метода ученые смогли синтезировать только фермий, элемент с 100-м атомным номером. Причем вместо необходимых 60 нейтронов, в ядро удалось внедрить только 20. Не увенчались успехом и попытки американских ученых синтезировать сверхтяжелые элементы в процессе ядерного взрыва (по сути, в мощном импульсном потоке нейтронов), результатом их экспериментов стал все тот же изотоп фермия. С этого момента начал развиваться другой способ синтеза - столкнуть два тяжелых ядра в надежде на то, что результатом их столкновения станет ядро суммарной массы. Для проведения эксперимента нужно одно из ядер разогнать до скорости, составляющей примерно 0,1 скорости света при помощи ускорителя тяжелых ионов. Все тяжелые ядра, полученные сегодня, были синтезированы именно таким образом. Как уже было отмечено, остров стабильности находится в области нейтроно-избыточных сверхтяжелых ядер, поэтому ядра мишени и пучка также должны содержать избыток нейтронов. Подобрать такие элементы довольно сложно, поскольку практически все существующие стабильные нуклиды имеют строго определенное отношение числа протонов и нейтронов.

В эксперименте по синтезу 114-го элемента в качестве мишени был использован самый тяжелый изотоп плутония с атомной массой 244, выработанный в реакторе Ливерморской национальной лаборатории (США) и кальций-48 в качестве ядра-снаряда. Кальций-48 - стабильный изотоп кальция, которого в обычном кальции содержится всего 0,1%. Экспериментаторы надеялись на то, что такая конфигурация позволит почувствовать эффект увеличения времени жизни сверхтяжелых элементов. Для проведения опыта требовался ускоритель с мощностью пучка кальция-48, превосходящей все известные ускорители в десятки раз. В течение пяти лет такой ускоритель был создан в Дубне, он дал возможность поставить эксперимент в несколько сот раз более точный, чем эксперименты в других странах на протяжении последних 25 лет.

Получив пучок кальция необходимой интенсивности, экспериментаторы облучают плутониевую мишень. Если в результате слияния двух ядер образуются атомы нового элемента, то они должны вылететь из мишени и вместе с пучком продолжить движение вперед. Но их надо отделить от ионов кальция и других продуктов реакции. Эту функцию выполняет сепаратор.

MASHA (Mass Analyzer of Super Heavy Atoms) — установка для сепарации ядер

Ядра отдачи, вылетающие из мишенного слоя, останавливаются в графитовом сборнике на глубине несколько микрометров. Вследствие высокой температуры сборника они диффундируют в камеру ионного источника, вытягиваются из плазмы, ускоряются электрическим полем и анализируются по массе магнитными полями по ходу движения к детектору. В данной конструкции масса атома может быть определена с точностью 1/3000. Задача детектора - определить, что в него попало тяжелое ядро, зарегистрировать его энергию, скорость и место его остановки с высокой точностью.

Схема работы сепаратора

Для проверки теории существования "острова стабильности" ученные наблюдали за продуктами распада ядра 114-го элемента. Если теория справедлива, то получившиеся ядра 114-го элемента должны быть устойчивы к спонтанному делению, и быть альфа-радиоактивны, то есть испускать альфа-частицу, состоящую из двух протонов и двух нейтронов. Для реакции с участием 114-го элемента должен наблюдаться переход 114-го в 112-й. Затем ядра 112-го также испытывают альфа-распад и переходят в ядра 110-го и так далее. Причем время жизни нового элемента должно быть на несколько порядков больше времени жизни более легких ядер. Именно такие долгоживущие события, существование которых было предсказано теоретически, и увидели дубненские физики. Это является прямым указанием на то, что 114-й элемент уже испытывает действие структурных сил, формирующих остров стабильности сверхтяжелых элементов.

Примеры цепочек распада 114-го и 116-го элементов

В опыте по синтезу 116-го элемента в качестве мишени использовали уникальное вещество - кюрий-248, полученный на мощном реакторе НИИ атомных реакторов в г. Димитровграде. В остальном эксперимент проходил по той же схеме, что и поиск 114-го элемента. Наблюдение цепочки распадов 116-го элемента стало еще одним доказательством существования 114-го элемента, на этот раз он был получен в результате распада более тяжелого "родителя". В случае со 116-м элементом экспериментальные данные также показали существенное увеличение времени жизни при увеличении количества нейтронов в ядре. То есть современная физика синтеза тяжелых элементов вплотную подошла к границе "острова стабильности". Кроме того, образовавшиеся вследствие распада 116-го элемента элементы с атомными номерами 108, 109 и 110 имеют время жизни, исчисляемое минутами, что даст возможность изучать химические свойства этих веществ методами современной радиохимии и экспериментально проверить фундаментальность закона Менделеева относительно периодичности химических свойств элементов в таблице. Применительно к тяжелым элементам можно предположить, что 112-й элемент обладает свойствами кадмия и ртути, а 114-й - олова, свинца и т.д. Вероятно, на вершине острова стабильности существуют сверхтяжелые элементы, время жизни которых составляет миллионы лет. Эта цифра не дотягивает до возраста Земли, но все же не исключено присутствие сверхтяжелых элементов в природе, в нашей Солнечной системе, либо в космических лучах, то есть в других системах нашей Галактики. Но пока эксперименты по поиску "природных" сверхтяжелых элементов не увенчались успехом.

В настоящее время в ОИЯИ идет подготовка эксперимента по поиску 119-го элемента таблицы Менделеева, а Лаборатория ядерных реакций является мировым лидером в области физики тяжелых ионов и синтеза сверхтяжелых элементов.

Анна Максимчук,
научный сотрудник ОИЯИ,
специально для R&D.CNews.ru

Интересно, конечно. Оказывается, что много ещё может быть открыто химических элементов и даже почти стабильных.

Возникает вопрос: а в чём практический смысл всего этого довольно дорогого мероприятия по поиску новых почти стабильных элементов?

Кажется так, что когда найдут способ производить эти элементы, тогда и будет видно.

Но кое-что просматривается уже и сейчас. Например, если кто смотрел фильм "Хищник", то у хищника есть устройство самоуничтожения в браслете на руке и взрыв довольно мощный получается. Так вот. Эти новые химические элементы подобны урану-235, но при этом критическая масса может исчисляться граммами (при этом 1 грамм этого вещества эквивалентен взрыву 10 тонн тротила -- неплохая такая бомбочка размером всего с пятикопеечную монету).

Так что уже есть большой смысл учёным трудиться в поте лица, а государству не скупиться на расходы.

Атомное ядро это система нуклонов, состоящая из Z протонов и N нейтронов, связанных ядерным взаимодействием. Энергия связи атомного ядра в жидко-капельной модели описывается формулой Бете-Вайцзеккера [3, 4 ]. В зависимости от времени жизни и соотношения между Z и N атомные ядра делятся на стабильные и радиоактивные. Явление радиоактивности было открыто А.А. Бекерелем в 1896 г., который обнаружил неизвестное ранее излучение, которое испускали соли урана .
В 1898 г. Пьер и Мария Кюри выделили новые элементы, радий Ra (Z = 88) и полоний Po (Z = 84) , также обладающие свойством радиоактивности. Э. Резерфорд в 1898 г. показал, что излучение урана имеет две компоненты: положительно заряженные α-частицы (ядра 4 He) и отрицательно заряженные β-частицы (электроны) [6, 9 ]. В 1900 году П. Виллардом было открыто γ-излучение урана .
Стабильные ядра расположены в так называемой долине стабильности (рис. 1). Отношение N к Z вдоль линии стабильности зависит от масового числа А = N + Z:

N/Z = 0.98 + 0.015А 2/3 . (1)

Рис. 1. NZ диаграмма атомных ядер

В настоящее время известно около 3500 атомных ядер, число стабильных ядер около 300. Слева от долины стабильности располагаются радиоактивные ядра, распадающиеся в результате β + -распада и е-захвата. При удалении от долины стабильности в сторону ядер, перегруженных протонами, уменьшается их период полураспада. Граница В р (N,Z) = 0 (В р (N,Z) энергия отделения протона в ядре (N,Z)) ограничивает область существования ядер слева.
При продвижении от долины стабильности в сторону ядер, перегруженных ней­тронами, также происходит уменьшение периода полураспада ядер. Справа область существования ядер ограничена соотношением В n (N,Z) = 0 (В n (N,Z) энергия отделения нейтрона в ядре (N,2)). Вне границ
В р (N,Z) = 0 и (В n (N,Z) = 0 атомные ядра существовать не могут, так как их распад происходит за характерное ядерное время τ яд = 10 -22 с.
Область ядер с протонным избытком экспериментально изучена практически пол­ностью вплоть до границы В р (N,Z) = 0. Что касается ядер с избытком нейтронов, то (за исключением легких ядер) область экспериментально обнаруженных ядер лежит довольно далеко от границы В n (N,Z) = 0. В этой области может располагаться еще около 2500 − 3000 неизвестных нам ядер.

Академик Г.Н. Флеров:
Ценность информации, полученной из исследования изотопа, находящегося далеко от области стабильности, значительно больше того, что мы узнаем, изучая изотопы, находящеся вблизи этой области. Это общий методологический подход, который используется и физиками, и химиками,
изучать свойства вещества в экстремальных условиях его существования. Изотопы, далекие от области (β-стабильности, являются предельными в том отношении, что в одном случае, когда протонов мало и число нейтронов относительно велико, основную роль играют ядерные силы; в другом случае, когда имеется избыток протонов, весьма существенную роль играют кулоновские силы отталкивания, вплоть до того, что становится возможным радиоактивный распад ядер с испусканием протонов.
В связи с этим становится понятным наш особый интерес к изучению ядер трансурановых элементов, где кулоновские силы настолько велики, что преодолевают ядерные силы притяжения. Почти исчезает потенциальный барьер, удерживающий в равновесии ядро как целое, и оно делится на осколки. В то же время специфические ядерные эффекты, связанные с внутренней структурой ядра, могут быть выражены чрезвычайно сильно. Именно в этой области элементов открыт новый вид ядерной изомерии изомерия формы. Здесь же возможен ряд других интересных явлений, связанных, например, с наличием второго минимума в энергии деформации ядра.

Доклад в Оргкомитет конференции ЮНЕСКО,
посвященный 100-летию создания таблицы Менделеева .

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели ядра предсказывают исчезновение барьера деления для ядер с Z 2 /А ≈ 41 (примерно 104 элемент) . В проблеме существования сверхтяжелых ядер следует выделить два круга вопросов.

  • Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N? Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  • Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения составного ядра и каналы снятия возбуждения образующихся ядер?

Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z, N = 2, 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным типам радиоактивного распада. Это явление объясняется в рамках модели ядерных оболочек − магические числа соответствуют заполненным ядерным оболочкам [12, 13 ]. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области NZ- диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. Применение метода