Английские правильные вакуумно индукционные печи. Схема и принцип работы индукционной печи. Продажа и стоимость вакуумных индукционных печей

Вакуумная печь — это устройство, которое в первую очередь предназначено для образования внутри системы высокой температуры. Проделывается весь этот путь, для того, чтобы достичь оптимальных условий для плавки металла в вакууме с помощью энергии электрической дуги.

Навигация:

Если говорить о том, где задействуются подобные устройства, то на данный момент вакуумные печи нашли свое применение во многих отраслях производства, где они играют одни из самых важных ролей. К примеру, вакуумные печи нашли свое применение в таких отраслях, как:

  • Ракетостроение
  • Космическая промышленность
  • Атомная энергетика
  • Металлургия

Все эти отрасли требуют качественной выплавки высококачественных сталей, которые смогут выдерживать самые трудные погодные условия. А без участия вакуумных печей, достичь подобной кондиции попросту невозможно.

Также можно рассмотреть главные преимущества вакуумной печи, которых на самом деле огромное количество. Пройдя через вакуумную печь, в сплаве остается минимальное содержание газов и неметаллических веществ.

Благодаря качественной конструкции вакуумных печей, а именно отдельных её элементов, удалось достичь максимальной прочности агрегата. Этот фактор позволяет достигать внутри системы максимальных температур, вплоть до 2000 градусов. При этом, сплавы являются действительно очень качественными и не содержат в себе каких-то нежеланных элементов. А сами печи, вне зависимости от ценовой категории никаким образом не портятся и остаются все такими же эффективными.

Но стоит отметить тот факт, что вакуумная печь, цена которой довольно высока — это не такой часто встречаемый продукт, и купить подобный агрегат будет весьма проблематично.

Дуговая печь

В отличие от обычной вакуумной печи, дуговая печь работает по мене запутанному алгоритму, но результаты, которые она предоставляет, ничем не уступают обычной версии вакуумной печи. Но стоит напомнить, что у этих печей абсолютно разное предназначение и каждая из них выполняет собственные задачи.

Дуговая печь работает за счет теплового эффекта электрической дуги, который приводит в действие весь механизм. Главная задача этого агрегата — это плавка металла, но кроме него, печь в силах справится и с другими материалами, и показывает себя в этом только с лучшей стороны.

Дуговые печи имеют три версии сборки, из-за чего их и разделили на три отдельных категории.

  • Печи прямого нагрева — электрическая дуга находится посредине двух электродов и находится под воздействием расплавленных металлов.
  • Печи с закрытой дугой — материал, который поддается нагреву, находится внутри, в полном окружении электродов. Что касается дуги, то в этом устройстве, она разместилась под нагреваемым материалом. С помощью излучения, дуга воздействует на материал внутри системы, придавая ему все условия для быстрой плавки, в то время как электрический ток проходит внутри расплавленного метала
  • Печи косвенного нагрева — Этот тип системы подразумевает более интересный способ работы, так как здесь электрическая дуга, находится в активном режиме только между электродами. Что касается тепла от дуги, то оно поступает посредством излучения.

Индукционная печь

Индукционные печи в плане внешнего вида не особо отличаются от своих собратьев, но что касается технологии работы, то здесь отличия просто кардинальные. В какой-то мере можно сказать, что именно индукционные плавильные печи — это прорыв в отрасли плавки металлов, так как технология плавильной печи устроена таким образом, что нагревается не сам агрегат, а лишь материал который в нем находится, так как электрическая энергия направленна исключительно на материал внутри системы.

Вакуумная индукционная плавильная печь, использует нагрев токами, высочайшей частоты, которые позволяют реализовать возможность создания наибольшей концентрации электрической энергии. Она же в свою очередь, направляется на метал, который находится в плавильной печи. Также большим плюсом является то, что подобная технология позволяет проводить нагрев намного быстрее, чем обычные печи. А это значит, что предприятия, которые используют именно индукционные плавильные печи, имеют возможность значительно увеличить эффективность труда, что принесет дополнительный доход.

Вакуумная термическая печь

Вакуумная термическая печь, как собственно и другие её вариации, также нашла свое применение во многих производственных отраслях и на данный момент используется многими предприятиями. Если говорить о самых известных отраслях, в которых на данный момент термическая печь является важнейшим звеном, то сюда можно отнести такие отрасли, как:

  • Авиационная промышленность
  • Космическая промышленность
  • Машиностроение

Все эти отрасли являются довольно распространёнными в нашей стране, и все они используют в своей работе вакуумную термообработку деталей, без которой они будут попросту не пригодны для работы. После термообработки, любая деталь покрывается небольшим покрытием, которое в будущем и служит надежным защитником от воздействия окружающей среды.

Что касается ценовой категории вакуумных термических печей — то это действительно дорогой агрегат, купить который будет довольно проблематично. Обычному человеку это возможно сделать, если он найдет самую маленькую версию печи подобного типа, которых на рынке не так много. Зачастую вакуумные термические печи используются большими предприятиями, которым требуется устройство, которое сможет давать хорошие показатели работоспособности и при этом работать сутками без остановки.

Водородная печь

Если говорить о наиболее качественной и надежной печи, то без каких-либо сомнений можно сказать, что таковой является водородная печь, имеющая наибольший спектр функций, которые позволяют ей справляться с самыми разными задачами. Не стоит также забывать и о характеристиках подобного агрегата, так как они действительно отличаются от того, что можно увидеть у вакуумных печах других вариаций.

Дополнительные процессы отжига и пайки, позволяют деталям обеспечить по-настоящему качественное соединение. Вакуумные водородные печи, также отличатся абсолютной автоматизацией и не требуют никакой человеческой помощи. Для долгой и качественной работы, надо лишь правильно настроить агрегат, после чего он будет выполнять все в точности с заданными параметрами.

Водородные печи выпускаются в самых различных вариациях в точном числе и в плане габаритов есть самые разные модели. А это значит, что человек, который хочет себе подобное устройство, имея нужную сумму денег, может без каких-либо преград купить себе подобный агрегат. Но все-таки намного чаще он используется на различных производствах, где он выполняет одну из важнейших функций.

По сути, сравнивать все эти печи – это довольно странная затея, так как все они имеют свое предназначение и выполняют отдельные функции. Но все-таки, если сравнивать их в плане производительности, то лучше всего себя показывает именно вакуумная водородная печь, демонстрируя отличное качество и скорость работы, которая значительно выше, чем у других печей вакуумного типа.

Технологические процессы производства и обработки различных материалов нередко включают и этап прохождения термического воздействия. Таким образом выполняется закалка, сушка при высоких температурах, пайка и другие процедуры. Реализовать подобные мероприятия в обычных печах даже промышленного назначения не всегда представляется возможным. Ограничения могут быть связаны с недопустимостью контакта с воздушной средой. Поэтому для решения таких задач используется вакуумная печь, обработка в которой также исключает процессы излишнего деформирования и коробления заготовок.

Назначение и сферы применения вакуумных печей

Операции термического обжига в вакууме применяются в машино- и приборостроении, в строительной отрасли, на различных производствах и т. д. Например, в приборостроении с помощью такого агрегата выполняется операция обезгаживания элементов, которые в дальнейшем становятся компонентами различной аппаратуры. В рамках этого же направления вакуумная печь позволяет качественно осуществлять пайку и финишную герметизацию отдельных участков на электротехнических платах.

Распространена и операция спекания. С ее помощью в строительстве и производстве придаются необходимые эксплуатационные качества керамическим изделиям, твердотельным сплавам, порошкам тугоплавкого металла и т. д. Отдельно стоит отметить металлургическую промышленность, которая также заинтересована в операциях термообработки. К примеру, вакуумная печь позволяет реализовывать процедуры закалки, старения и отпуска сплавов. Таким обработкам могут подвергаться различные стали, бронза и магний.

Основные технические характеристики

Производительность печной конструкции нередко становится основным критерием выбора модели. В данном случае установки располагают потенциалом от 3 до 20 кВт. Причем на качество и эффективность при оказании термического воздействия этот показатель влияет в минимальной степени. Как правило, мощность повышается по мере увеличения объема загрузки, что зависит уже от габаритов конструкции. Так, в стандартные промышленные модели такого типа можно загружать от 15 до 40 кг материала в среднем. Но встречаются и агрегаты, позволяющие обслуживать за раз до 100 кг. Наделенная средними характеристиками индукционная плавильная печь способна за одну смену обслуживать до 9000 кг. Что касается качества и эффективности воздействия внутри камеры, то учитывать следует непосредственно температурный диапазон. Он составляет от 1800 до 2000 °С.

Процесс выплавки

Технология в традиционных агрегатах основывается на действии дугового разряда. Происходит контакт электрического тока и газовой смеси. Далее полученная дуга благодаря высокой концентрации в вакууме обеспечивает повышенное тепловое воздействие. Даже при небольшой мощности вакуумно-дуговая печь способна расплавлять стальные заготовки.

При этом существует два принципа теплопередачи по отношению к материалу. Это прямое и косвенное воздействие. В первом случае дуга формирует энергию между электродом и заготовкой, которая при такой конфигурации получает максимум тепла. Косвенный нагрев предусматривает работу с двумя электродами, которые на некотором расстоянии воздействуют на объект. Очевидно, что вакуумная печь с прямой теплопередачей эффективнее, но она допускает больший процент негативных факторов термической обработки.

Разновидности печей

Базовой моделью вакуумного печного сооружения является описанная выше дуговая конструкция. С помощью такой оснастки можно обслуживать большинство разновидностей сложного металлического сплава, в том числе тугоплавкие изделия. Другой разновидностью является индукционная плавильная печь, в устройстве которой предусматривается наклонный тигель. Как раз в тигле и реализуется процесс переплавки материала, загружаемого в рабочую камеру. Индукционный принцип работы считается наиболее дорогостоящим в обслуживании, поэтому его используют реже и только при необходимости работы со сложными металлами. К особым видам вакуумных печей относится электроннолучевой агрегат. Такое устройство дает на выходе очищенные сплавы и металлические слитки. Конструкционно оборудование представляет собой термическую пушку, которая посредством направленного воздействия реализует лучевой обжиг изделия.

Преимущества и недостатки вакуумных печей

По сравнению с обычными печами для термообработки вакуум позволяет осуществлять высокоэффективное тепловое воздействие на заготовки. При этом у оператора есть возможность гибкой регулировки параметров нагрева, которую, например, предусматривает вакуумная индукционная печь с тиглем. К достоинствам таких конструкций относят и возможность получения относительно чистого металлического материала. То есть сама технология исключает чрезмерное загрязнение массива инородными частицами - продуктами термообработки.

Что касается недостатков, то они связаны с низким ресурсом частей, формирующих конструкцию. Дело даже не в изъянах материала составных элементов, а в жестких условиях, которые требуются для обеспечения производительной термообработки и которые влияют на структуру рабочих поверхностей. Кроме того, вакуумная печь, цена которой в среднем составляет 500-700 тыс. руб., доступна немногим предприятиям. Все же высокое качество спекания и расплава - это дорогой способ, ограничивающий его применение.

Производители

Поставкой вакуумных печей занимаются лишь крупные предприятия, сотрудничающие с институтами проектирования и разработки промышленного оборудования. Сегодня высококачественные агрегаты такого типа на отечественный рынок поставляют зарубежные производители SCHMETZ и XERION. Данная продукция ориентируется и на выполнение типовых термических операций, и на специализированные задачи наподобие диффузного отжига. Московский завод промышленного оборудования, специализирующийся на выпуске вакуумных электропечей, также предлагает достойные по характеристикам агрегаты. С помощью такого оснащения владелец может осуществлять отпуск металла, спекание и стандартные термические процессы. Автоматические модели предлагает «Завод Спецжелезобетон», разрабатывающий высоковакуумные агрегаты с объемными камерами загрузки.

Заключение

Пример технологии вакуумного отжига показывает, что не всегда новые решения себя оправдывают в процессе эксплуатации. Хотя тот же Московский завод промышленного оборудования стремится оптимизировать агрегаты под нужды широкого круга предприятий-потребителей, высокая затратность процессов вакуумной термообработки для многих потенциальных клиентов делает этот способ недоступным. Отказ от таких печей обусловлен не только их стоимостью, но отсутствием необходимости получения высококачественного изделия. Тем не менее, передовые компании, работающие в высокотехнологичных направлениях промышленности, уже не могут обходиться без применения подобных средств тепловой обработки.

Выплавка в вакуумной индукционной печи позволяет решить несколько проблем производства сложнолегированных сплавов. Во-первых, при плавке в вакууме с помощью раскисления углеродом и повышением температуры удается разрушить окисную плену на поверхности ванны и производить плавку и разливку сплавов с чистым зеркалом. Во-вторых, обеспечивается стабильность химического состава сплавов от плавки к плавке и, следовательно, постоянный уровень механических свойств. Так, например, содержание алюминия и титана можно контролировать с точностью до ±0,12%, в то время, как в открытой плавке - с точностью до 1 %.

В-третьих, после плавки в вакууме значительно повышается степень чистоты сплавов. Так, например, в жаропрочном никелевом сплаве R235 (0,15% С; 15,5% Cr; 5,3% Mo; 10% Fe; 2,0% Ti; 3,0% Al) на никелевой основе по сравнению с плавкой, на воздухе содержание кислорода уменьшилось с 0,017 до 0,0025%, азота с 0,004 до 0,002%, водорода с 0,0006 до 0,00005% . В сплаве Уэспаллой (0,07% С; 0,4% Si; 0,7% Mn; 19% Cr; 14% Со; 4,3% Mo; 3,0% Ti; 1,3% Al; Ni - ост.) содержание кислорода после плавки в вакууме понизилось до 0,0012%; азота до 0,012%, водорода до 0,00025% .

На рис. 113 показано влияние азота на свойства жаропрочного сплава ЖС6К- Как видно из рис. ИЗ, для этого сплава необходимо получать некоторое оптимальное содержание азота. Азот, очевидно, оказывает модифицирующее влияние на структуру сплава. Кислород в жаропрочных сплавах оказывает отрицательное влияние на жаропрочные свойства, что хорошо видно из рис. 114, на котором представлена зависимость времени разрушения сплава Удимет-500 под нагрузкой от концентрации кислорода.


На свойства сплавов Х20Н80 и Х15Н60, выплавленных в ВИП, большое влияние оказывает присадка РЗМ. В вакууме количество РЗМ может быть значительно сокращено. Наиболее высокие результаты получали при легировании сплава церием на 0,10- 0,15% и кремнием на 1,4% или церием на 0,05-0,08% и лантаном на 0,05-0,08%. Благодаря повышению чистоты металла содержание азота составило 0,007%; кислорода 0,001%.

После ВИП живучесть сплава Х20Н80 повысилась с 40 до 70 ч, а за счет дополнительного легирования РЗМ в вакууме с 70 до 150-250 ч (96% всех плавок). Живучесть сплава Х15Н60 менее легированного, чем Х20Н80, превысила 100 ч. Повысились и электротехнические свойства. Так, для сплава Х20Н80 удельное электросопротивление в среднем повысилось с 1,1 до 1,18 Ом мм2/м. При нагреве в вакуумном материале изменение электросопротивления на 3-8% происходит за 200-400 ч, в то время, как в обычном сплаве за 40-60 ч .

По мнению авторов этой работы, положительное влияние применения церия при ВИП заключается в его воздействии на образование сульфидов. Церий способствует удалению сульфидов путем образования прочных тугоплавких сульфидов, всплывающих до кристаллизации или на ее ранней стадии.. В присутствии церия снижается вероятность образования сульфидов других элементов, например титана, если последний содержится в металле. Подобное же воздействие на серу оказывает и магний.

При вакуумной выплавке в индукционной печи жаропрочных сплавов происходит значительное испарение примесей цветных металлов. Этот способ обеспечивает один из наиболее низких уровней содержаний этих примесей по сравнению с другими методами. Так, для высокопрочной стали, по данным Чуприна , содержание примесей цветных металлов в зависимости от способа выплавки характеризуется данными, приведенными в табл. 37.

Таблица 37 СОДЕРЖАНИЕ ПРИМЕСЕЙ ЦВЕТНЫХ МЕТАЛЛОВ В ВЫСОКОПРОЧНОЙ СТАЛИ

плавка на воздухе

С увеличением длительности выдержки жидкого металла в вакууме содержание примесей цветных металлов уменьшается, а механические свойства сплавов возрастают, что видно на рис. 115.

Но простое рафинирование металла от примесей не всегда способствует повышению его свойств.

Так, по данным К. Я. Шпунт, для жаропрочных сплавов, кроме рафинирования в вакууме, большое значение имеет остаточное содержание модифицирующих элементов магния и церия.

В результате выплавки в вакууме значительно повышаются механические свойства жаропрочных сплавов. В качестве примера можно привести улучшение свойств жаропрочного сплава, выплавленного в вакуумной индукционной печи.

Плавка в вакуумной индукционной печи повышает ковкость кобальтовых сплавов, позволяет обрабатывать обычно недефор-мируемые сплавы. Повышаются свойства литых сплавов, прецизионных отливок, таких как лопатки, клапаны, роторные диски турбин, направляющие и других деталей реактивных двигателей.

Плавка в вакууме позволяет повысить механические свойства жаропрочных сплавов благодаря усложнению состава, т. е. введению новых легирующих компонентов, повышением содержания упрочняющих компонентов. При обычной плавке на воздухе увеличение содержания титана, алюминия, молибдена или усложнение состава приводит к снижению жаропрочных свойств.

Корпус вакуумной камеры индукционной печи : двухслойный с водяным охлаждением из специальной стали SUS304. Вакуумная герметизация обеспечивается «О»-образным кольцом. Корпус оснащен установкой водяного охлаждения (предотвращает старение «О»-образного кольца). На корпусе вакуумной камеры вакуумной расположен соединительный трубопровод вакуумной системы. Внутри подина оборудована разливочной платформой или отверстием. Во время разливки печь поворачивается с помощью привода, расположенный снаружи камеры.

Индуктор вакуумной печи изготовлен из высококачественной бескислородной электротехнической меди TU1 квадратного сечения с водяным охлаждением. Использован индуктор немецкой фирмы Leybold.

Крышка вакуумной индукционной печи: двухслойная с водяным охлаждением, внутренняя стенка выполнена из специальной стали SUS304. Крышка печи оснащена установкой водяного охлаждения, смотровым окном, блокировочной установкой.

Печь оснащена мощным среднечастотным тиристорным преобразователем мощность, спроектированный на базе тиристоров нового поколения, высокоскоростные датчики тока и напряжения, обеспечивающие высокую надежность, помехоустойчивость и многофункциональность.

Система водоохлаждения вакуумной печи делится на три части: система охлаждения среднечастотного преобразователя, система охлаждения корпуса печи, индуктора и системы вакуумной.

Вакуумная система как правило состоит из механического насоса с электромагнитным пневматическим клапаном перепада давления (предотвращает утечку масла вакуумного насоса), насоса Рутса, подпитывающего насоса, пневматических клапанов, клапана подачи воздуха, клапана сброса воздуха, вакуумного трубопровода, гофрированных труб.

Уровень вакуума измеряется при помощи цифрового комбинированного вакуумметра. Используются передовые гелиевые датчики разгерметизации для измерения коэффициента повышения давления, что гарантирует достоверность и точность технических показателей.

Для соединения насосов и вакуумного трубопровода использовано быстрое соединение металлическими гофрированными трубами (снижает вибрацию). Уровень вакуума измеряется цифровым вакуумметром.

Компания MAGMATEX использует передовые гелиевые датчики разгерметизации для измерения коэффициента повышения давления, что гарантирует достоверность и точность технических показателей.

Вакуумные индукционные печи (ВИП) предназначены для плавки и рафинирования высоколегированных сталей, жаропрочных и прецизионных сплавов с низким содержанием углерода с таким расчетом, чтобы во время плавки поддерживалось остаточное давление 10-1--10-2 Па. ВИП работают на отходах собственного металлургического производства и чистых металлических материалах. Крупные ВИП иногда вместо твердой завалки используют жидкий полупродукт, выплавленный в других агрегатах (обычно ДСП). По сравнению с другими плавильными установками специальной электрометаллургии ВИП имеет следующие преимущества:

1) жидкий металл можно длительное время выдерживать в вакууме. Это обеспечивает глубокую дегазацию, раскисление и очищение стали от неметаллических включений и примесей цветных металлов;

2) можно выплавлять любые сложные по химическому составу стали и сплавы, наличие электромагнитного перемешивания металла создает благоприятные условия для быстрого растворения легирующих добавок;

3) простота регулирования мощности и дозировки энергии обеспечивает быстрый перегрев металла до требуемого уровня с высокой точностью.

К недостаткам ВИП относятся: загрязнение металла материалом тигля, холодные шлаки, низкая стойкость тигля (20--50 плавок на промышленных печах).

Электрический КПД вакуумной индукционной печи при плавке сталей составляет з = 0,7ч0,8.

В индукционных тигельных печах, к которым относится ВИП, происходит естественная циркуляция расплавленного металла, обусловленная электродинамическими усилиями. Циркуляция металла возникает при взаимодействии вихревых токов, протекающих в жидком металле, с током индуктора.. Равнодействующая сила, направленная от индуктора на металл, приходится на среднюю часть тигля. Это приводит к возникновению в расплаве так называемой двухконтурной циркуляции, когда расплав в верхней части ванны выдавливается вверх, а в нижней -- вниз, образуя самостоятельные контуры движения металла (рис. 55, а). В результате в центре тигля поверхность металла поднимается, образуя выпуклый мениск.

Интенсивное перемешивание металла играет- положительную роль, ускоряя процессы растворения легирующих добавок и выравнивая температуру в объеме ванны. Наличие мениска относится к нежелательным явлениям, так как шлак перемещается к стенкам тигля, способствуя ускоренному разъеданию его футеровки, а в центре металл оголяется, что приводит к увеличению потерь тепла и ухудшению условий протекания реакций между шлаком и металлом. Эффект перемешивания металла возрастает с понижением частоты и снижается при переходе к более высоким частотам.

Электрическое питание вакуумных индукционных печей осуществляется от машинных высокочастотных генераторов,. ти-ристорных преобразователей частоты и ламповых генераторов (применяются на лабораторных печах). КПД машинных генераторов составляет 70-85%, ламповых 50-70%, тиристорных преобразователей 90-95 %.

Особенности конструкции вакуумных индукционных плавильных печей

По Принципу работы вакуумные индукционные печи (ВИП) выполняются двух типов -- периодического и полунепрерывного действия.

Печи периодического действия имеют одну вакуум-камеру, где после эвакуации воздуха производится плавка металла с последующей его разливкой в изложницу или форму. После разливки металла печь разгерметизируют для удаления изложницы со слитком, осмотра и ремонта тигля, загрузки шихты. При этом либо отводится в сторону или снимается крышка корпуса, либо отводится корпус вакуумной камеры. После извлечения слитка, чистки тигля и загрузки в тигель новой порции шихты в вакуум-камеру устанавливают порожнюю изложницу, печь закрывают, производят откачку воздуха и начинают очередную плавку.

Печи полунепрерывного действия имеют три вакуум-камеры: плавильную, загрузочную и разливочную. Иногда разливочная камера заменяется камерой изложницы. Тогда металл разливают в плавильной камере. Загрузочная и разливочная камеры (или камеры изложницы) отделены от плавильной камеры шлюзовыми затворами шиберного типа. Это позволяет проводить, в печи без разгерметизации не одну плавку, а серию плавок, количество которых определяется стойкостью футеровки тигля (одной кампании тигля).

В печах полунепрерывного действия благодаря наличию шлюзовых затворов одновременно с плавкой металла в вакууме в плавильной камере в загрузочной камере при атмосферном давлении устанавливается корзина с новой порцией шихты. В разливочной камере в это же время проводятся операции по извлечению изложниц с залитым в них металлом и установкой изложниц под разливку. Загрузочная и разливочная камеры отделены от внешней среды технологическими затворами шиберного типа. После проведения всех необходимых операций загрузочная и разливочная камеры герметизируются с помощью затворов и из них эвакуируется воздух. Печи полунепрерывного действия получили широкое распространение благодаря ряду преимуществ по сравнению с печами периодического действия - более высокой производительности из-за отсутствия откачки воздуха из плавильной камеры перед каждой плавкой, более высокой стойкости тигля вследствие уменьшения периодического охлаждения и нагрева при разгерметизации плавильной камеры, исключения времени на остывание изложниц или форм перед удалением их из плавильной камеры, уменьшения окисления металла и его загрязнения из-за напуска воздуха в плавильную камеру.

Современная индукционная вакуумная печь полунепрерывного действия вместимостью 2,5 т (ИСВ-2.5-НИ) конструкции ВНИИЭТО показана на рис. 7.

Схема вакуумной индукционной электропечи ИСВ-2.5НИ полунепрерывного действия вместимостью 2,5 т конструкции ВНИИЭТО

Печь состоит из плавильной камеры 1 с цилиндрической частью 8, внутри которой расположен индуктор с тиглем 2 . Наклон печи осуществляется цепным механизмом 3. Загрузочная камера 7 , внутри которой располагается саморазгружающаяся корзина 5 , отделена от плавильной камеры вакуумным затвором 4. Корзина с шихтой 5 перемещается с помощью канатного механизма 6. Печь снабжена восьмисекционным дозатором 9 для загрузки в тигель по ходу плавки раскислителей и легирующих добавок. Для удобства обслуживания печи в верхней части корпуса снаружи установлена площадка 10. Зачистка тигля производится ломиком 11, расположенным на глухой крышке 12. Камера изложниц 13 прямоугольной формы соединена с плавильной камерой через вакуумной затвор. Рядом с камерой изложниц установлен специальный стенд, предназначенный "для установки тележки с изложницами 14 перед их закатыванием в плавильную камеру и после выката их из печи. Печь снабжена самоходной тележкой 15 для отката крышки 16 плавильной камеры 1. Изложницы между плавильной камерой и камерой изложниц перемещаются на тележке с помощью механизма, приводимого в действие от электропривода. Вакуумная система снабжена форвакуумными и бустерными насосами, которые обеспечивают откачку воздуха из плавильной камеры, камеры загрузки, камеры изложниц и дозатора.