Что такое сила архимеда определение. Формула силы архимеда

Эмпирически еще в древней Греции было получено, что тело, погруженное в жидкость, весит меньше, чем находящееся в воздухе. На тело в жидкости со всех сторон она оказывает давление. Силы давления направлены перпендикулярно поверхности тела в каждой его точке. В том случае, если все силы, действующие на тело, были бы равны по модулю, то это тело испытывало только всестороннее сжатие. Мы знаем, что при увеличении глубины гидростатическое давление увеличивается, следовательно, силы давления, которые приложены к нижним частям тела больше, чем силы, которые действуют на тело вверху.

Если заменить все силы давления, которые приложены к телу, находящемуся в жидкости, одной результирующей силой, то эта сила будет направлена вверх. В этой связи ее назвали выталкивающей силой. По-другому ее называют силой Архимеда (${\overline{F}}_A$). Именно Архимед отметил факт ее существования и определил, как ее вычислить.

Сила Архимеда оказывает свое действие на тела не только в жидкостях, но и газах, там, где существует гиростатическое давление.

Величина силы Архимеда

Сила Архимеда, оказывающая действие на тело, погруженное в жидкость (или газ), равна весу жидкости (или газа), в объеме вытесненной (вытесненным) этим телом.

Рассмотрим тело в виде прямоугольного параллелепипеда полностью находящееся в жидкости рис.1. Предположим, что верхнее и нижнее основания располагаются параллельно горизонту.

Силы давления, действующие на боковые грани параллелепипеда, попарно уравновешены (например, ${\overline{F}}_{12}$=$-{\overline{F}}_{21}$). Они только сжимают параллелепипед. Силы, которые действуют на верхнюю и нижнюю грани параллелепипеда не равны между собой. Сила ($F_1$), действия столба жидкости на верхнюю грань, будет равна:

где $\rho $ - плотность жидкости; $S$ - площадь основания; $h_1$ - высота столба жидкости над верхним основанием параллелепипеда.$\ p_0-$ давление атмосферы на поверхность жидкости.

Сила давления жидкости на нижнее основание параллелепипеда:

где $h_2$ - высота столба жидкости над нижним основанием. Так как $h_2>h_1$, значит $F_2>F_1$. Модуль результирующей силы, действующей на тело со стороны жидкости:

Если обозначить высоту параллелепипеда как $h=h_2-h_1$, получим:

где $V$ - объем параллелепипеда. При нахождении тела в жидкости (газе) частично, то под V понимают объем погруженный в вещество (жидкость, газ). Правую часть выражения (4) еще называют весом жидкости, которую вытесняет тело, погруженное в нее.

На тело, находящееся в жидкости или газе, действует сила Архимеда, величина которой равна весу вещества (жидкости или газа) в объеме погруженной части тела. Сила Архимеда направлена вертикально вверх.

Закон Архимеда (4) выполняется для тел любой формы.

Сила Архимеда дает возможность плавать разного рода кораблям, несмотря на то, что плотность материала, из которого изготовлен корпус транспортного средства в несколько раз больше, чем плотность воды. Необходимо только чтобы вес воды, которую вытесняет подводная часть судна, был равен силе тяжести, которая действует на судно. Средняя же плотность корабля меньше плотности воды.

Сила Архимеда действует на тела находящиеся в воздухе. Но так как плотность воздуха мала, действием этой силы часто пренебрегают. В состоянии невесомости сила Архимеда равна нулю. В состоянии невесомости нет гидростатического давления.

Следует учесть, рассуждая о действии силы Архимеда, мы имеем в виду, что тело окружено жидкостью (газом), может быть за исключением своей верхней части. Если тело примыкаем ко дну сосуда или его стенке, то равнодействующая сил гидростатического давления станет прижимать тело ко дну или стенке. В этой связи, например, присасываются ко дну якоря кораблей, и если якорь лежит на большой глубине, то его крайне сложно оторвать от дна.

Примеры задач с решением

Пример 1

Задание. Металлический предмет, имеющий объем $V=10\ {см}^3$ упал в речку. Какова сила выталкивания, действующая на него?

Решение. На тело в воде будет действовать сила Архимеда (она же сила выталкивания), равная:

где $\rho =1000\ \frac{кг}{м^3}-\ $плотность пресной воды при нормальных условиях; $V=10\ {см}^3={10}^{-5}м^3$; $g=9,8\ \frac{м}{с^2}$ - ускорение свободного падения. Вычислим силу выталкивания:

Ответ. $F_A=9,8\cdot {10}^{-2}$Н

Пример 2

Задание. Чему равна сила натяжения каната (N), при помощи которого из пресного водоема равномерно двигая, поднимают тело плотностью $\rho $ и объемом V? Плотность воды считайте известной (${\rho }_g$). Движение рассмотрите в жидкости.

Решение. Рассмотрим силы, действующие на тело, поднимаемое из воды (рис.2).

В соответствии со вторым законом Ньютона равнодействующая всех сил, приложенных к телу равна нулю, так как тело поднимают равномерно:

\[\overline{N}+m\overline{g}+{\overline{F}}_A=0\ \left(2.1\right).\]

В проекции на ось Y инерциальной системы отсчета, которую мы связали с Землей, уравнение (2.1) даст нам следующее скалярное выражение:

Масса поднимаемого тела может быть найдена как:

Силу Архимеда определим как:

Подставим правые части выражений (2.3) и (2.4) в формулу (2.2) вместо соответствующих величин, выразим силу натяжения каната:

Ответ. $N=\left(\rho -{\rho }_g\right)Vg$

ЗАКОН АРХИМЕДА –закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается можем поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился. Чтобы понять природу силы, действующей на погруженное тело со стороны жидкости, достаточно рассмотреть простой пример (рис. 1).

Кубик с ребром a погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Гораздо менее очевидно (или совсем не очевидно), что это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.

Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и на нижнюю грани. Пусть h – глубина погружения верхней грани, r – плотность жидкости, g – ускорение силы тяжести; тогда давление на верхнюю грань равно

r · g · h = p 1

а на нижнюю

r · g (h+a ) = p 2

Сила давления равна давлению, умноженному на площадь, т.е.

F 1 = p 1 · a \up122, F 2 = p 2 · a \up122 , где a – ребро кубика,

причем сила F 1 направлена вниз, а сила F 2 – вверх. Таким образом, действие жидкости на кубик сводится к двум силам – F 1 и F 2 и определяется их разностью, которая и является выталкивающей силой:

F 2 – F 1 =r · g · (h+a ) a \up122 – r gha ·a 2 = pga 2

Сила – выталкивающая, так как нижняя грань, естественно, расположена ниже верхней и сила, действующая вверх, больше, чем сила, действующая вниз. Величина F 2 – F 1 = pga 3 равна объему тела (кубика) a 3 , умноженному на вес одного кубического сантиметра жидкости (если принять за единицу длины 1 см). Другими словами, выталкивающая сила, которую часто называют архимедовой силой, равна весу жидкости в объеме тела и направлена вверх. Этот закон установил античный греческий ученый Архимед , один из величайших ученых Земли.

Если тело произвольной формы (рис. 2) занимает внутри жидкости объем V , то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела – («жидкости все равно на что давить»).

Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V – тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V . Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V , т.е. pgV .

Сделав мысленно обратную замену – поместив в объеме V данное тело и отметив, что эта замена никак не скажется на распределении сил давления на поверхность объема V , можно сделать вывод: на погруженное в покоящуюся тяжелую жидкость тело действуют направленная вверх сила (архимедова сила), равная весу жидкости в объеме данного тела.

Аналогично можно показать, что если тело частично погружено в жидкость, то архимедова сила равна весу жидкости в объеме погруженной части тела. Если в этом случае архимедова сила равна весу, то тело плавает на поверхности жидкости. Очевидно, что если при полном погружении архимедова сила окажется меньше веса тела, то оно утонет. Архимед ввел понятие «удельного веса» g , т.е. веса единицы объема вещества: g = pg ; если принять, что для воды g = 1 , то сплошное тело из вещества, у которого g > 1 утонет, а при g < 1 будет плавать на поверхности; при g = 1 тело может плавать (зависать) внутри жидкости. В заключение заметим, что закон Архимеда описывает поведение аэростатов в воздухе (в покое при малых скоростях движения).

Владимир Кузнецов

Причина возникновения архимедовой силы – разность давлений среды на разной глубине. Поэтому сила Архимеда возникает только в при наличии силы тяжести. На Луне она будет вшестеро, а на Марсе – в 2,5 раза меньше, чем на Земле.

В невесомости архимедовой силы нет. Если представить себе, что сила тяжести на Земле вдруг пропала, то все корабли в морях, океанах и реках от малейшего толчка уйдут на любую глубину. А вот подняться вверх им не даст не зависящее от силы тяжести поверхностное натяжение воды, так что взлететь они не смогут, все потонут.

Как проявляется сила Архимеда

Величина архимедовой силы зависит от объема погруженного тела и плотности среды, в которой оно находится. Его точная в современном представлении: на погруженное в жидкую или газовую среду тело в поле силы тяжести действует выталкивающая сила, в точности равная весу вытесненной телом среды, то есть F = ρgV, где F – сила Архимеда; ρ – плотность среды; g – ускорение свободного падения; V – объем вытесненной телом или погруженной его частью жидкости (газа).

Если в пресной воде на каждый литр объема погруженного тела действует выталкивающая сила в 1 кг (9,81 н), то в морской воде, плотность которой 1,025 кг*куб. дм, на тот же литр объема будет действовать сила Архимеда в 1 кг 25 г. Для человека средней комплекции разность силы поддержки морской и пресной водой составит почти 1,9 кг. Поэтому плавать в море легче: представьте себе, что вам нужно переплыть хотя бы пруд без течения с двухкилограммовой гантелью за поясом.

От формы погруженного тела архимедова сила не зависит. Возьмите железный цилиндр, измерьте силу его из воды. Затем раскатайте этот цилиндр в лист, погрузите в воду плашмя и ребром. Во всех трех случаях сила Архимеда окажется одинаковой.

На первый взгляд странно, но, если погружать лист плашмя, то уменьшение разности давлений для тонкого листа компенсируется увеличением его площади, перпендикулярной поверхности воды. А при погружении ребром - наоборот, малая площадь ребра компенсируется большей высотой листа.

Если вода очень сильно насыщена солями, отчего ее плотность стала выше плотности человеческого тела, то в ней не утонет и человек, не умеющий плавать. В Мертвом море в Израиле, например, туристы могут часами лежать на воде, не шевелясь. Правда, ходить по нему все равно нельзя – площадь опоры получается малой, человек проваливается в воду по горло, пока вес погруженной части тела не сравняется с весом вытесненной им воды. Однако при наличии некоторой доли фантазии сложить легенду о хождении по воде можно. А вот в керосине, плотность которого всего 0,815 кг*куб. дм, не сможет удержаться на поверхности и очень опытный пловец.

Архимедова сила в динамике

То, что суда плавают благодаря силе Архимеда, известно всем. Но рыбаки знают, что архимедову силу можно использовать и в динамике. Если на попалась большая и сильная рыбина (таймень, например), то медленно подтягивать ее к сачку (вываживать) нет: оборвет леску и уйдет. Нужно сначала дернуть слегка, когда она уходит. Почувствовав при этом крючок, рыба, стремясь освободиться от него, метнется в сторону рыбака. Тогда нужно дернуть очень сильно и резко, чтобы леска не успела порваться.

В воде тело рыбы почти ничего не весит, но его масса с инерцией сохраняются. При таком способе ловли архимедова сила как бы наддаст рыбе в хвост, и добыча сама плюхнется к ногам рыболова или к нему в лодку.

Архимедова сила в воздухе

Архимедова сила действует не только в жидкостях, но и в газах. Благодаря ей летают воздушные шары и дирижабли (цеппелины). 1 куб. м воздуха при нормальных условиях (20 градусов Цельсия на уровне моря) весит 1,29 кг, а 1 кг гелия – 0,21 кг. То есть 1 кубометр наполненной оболочки способен поднять груз в 1,08 кг. Если оболочка диаметром в 10 м, то ее объем будет 523 куб. м. Выполнив ее из легкого синтетического материала, получим подъемную силу около полутонны. Архимедову силу в воздухе аэронавты называют сплавной силой.

Если из аэростата откачать воздух, не дав ему сморщиться, то каждый его кубометр потянет вверх уже все 1,29 кг. Прибавка более 20% к подъемной силе технически весьма соблазнительна, да гелий дорог, а водород взрывоопасен. Поэтому проекты вакуумных дирижаблей время от времени появляются на свет. Но материалов, способных при этом выдержать большое (около 1 кг на кв. см) атмосферное давление снаружи на оболочку, современная технология создать пока не способна.

Зависимость давления в жидкости или газе от глубины погружения тела приводит к появлению выталкивающей силы / или иначе силы Архимеда /, действующей на любое тело, погруженное в жидкость или газ.

Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Величина Архимедовой силы определяется по закону Архимеда.

Закон назван в честь древнегреческого ученого Архимеда, жившего в 3 веке до нашей эры.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки. Скорее всего вы уже знаете легенду о том, как Архимед открыл свой закон: "Вызвал его однажды сиракузский царь Гиерон и говорит.... А что было дальше? ...

Закон Архимеда, впервые был упомянут им в трактате " О плавающих телах". Архимед писал: " тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Еще одна формула для определения Архимедовой силы:

Интересно, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

ВЕС ТЕЛА, ПОГРУЖЕННОГО В ЖИДКОСТЬ (ИЛИ ГАЗ)

Вес тела в вакууме Pо=mg .
Если тело погружено в жидкость или газ,
то P = Pо - Fа = Ро - Pж

Вес тела, погруженного в жидкость или газ, уменьшается на величину выталкивающей силы, действующей на тело.

Или иначе:

Тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость.

КНИЖНАЯ ПОЛКА

ОКАЗЫВАЕТСЯ

Плотность оганизмов, живущих в воде почти не отличается от плотности воды, поэтому прочные скелеты им не нужны!

Рыбы регулируют глубину погружения, меняя среднюю плотность своего тела. Для этого им необходимо лишь изменить объем плавательного пузыря, сокращая или расслабляя мышцы.

У берегов Египта, водится удивительная рыба фагак. Приближение опасности заставляет фагака быстро заглатывать воду. При этом в пищеводе рыбы происходит бурное разложение продуктов питания с выделением значительного количества газов. Газы заполняют не только действующую полость пищевода, но и имеющийся при ней слепой вырост. В результате тело фагака сильно раздувается, и, в соответствии с законом Архимеда, он быстро всплывает на поверхность водоема. Здесь он плавает, повиснув вверх брюхом, пока выделившиеся в его организме газы не улетучатся. После этого сила тяжести опускает его на дно водоема, где он укрывается среди придонных водорослей.

Чилим (водяной орех) после цветения дает под водой тяжелые плоды. Эти плоды настолько тяжелы, что вполне могут увлечь на дно все растение. Однако в это время у чилима, растущего в глубокой воде, на черешках листьев возникают вздутия, придающие ему необходимую подъемную силу, и он не тонет.

Жидкости (газа), - ускорение свободного падения , а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

В теоретической физике также применяют закон Архимеда в интегральной форме:

,

где - площадь поверхности, - давление в произвольной точке, интегрирование производится по всей поверхности тела.

В отсутствие гравитационного поля, то есть в состоянии невесомости , закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции , поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами .

Обобщения

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) - на этом основано центрифугирование . Пример для поля немеханической природы: проводящее тело вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы

Гидростатическое давление жидкости на глубине есть . При этом считаем давление жидкости и напряжённость гравитационного поля постоянными величинами, а - параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат , причём выберем направление оси z совпадающим с направлением вектора . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку . На неё будет действовать сила давления жидкости направленная внутрь тела, . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса .

Получаем, что модуль силы Архимеда равен , а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:

Другая формулировка (где - плотность тела, - плотность среды, в которую оно погружено):

См. также

Примечания

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Архимеда" в других словарях:

    ЗАКОН АРХИМЕДА, АРХИМЕД сделал вывод, что тело, погруженное в жидкость, выталкивается с силой, равной весу вытесненной жидкости. Рассказывают, что он якобы сформулировал этот закон, погрузившись в ванну и наблюдая, как вытекает вода. Согласно… … Научно-технический энциклопедический словарь

    ЗАКОН АРХИМЕДА - закон гидро и аэростатики, согласно которому на всякое тело, погружённое в жидкость или газ, действует выталкивающая сила (архимедова сила), равная весу вытесненной телом жидкости (газа), направленная по вертикали вверх и приложенная к центру… … Большая политехническая энциклопедия

    закон Архимеда - Archimedo dėsnis statusas T sritis Standartizacija ir metrologija apibrėžtis Skysčių ir dujų statikos dėsnis: kūną, panardintą į skystį ar dujas, veikia išstumiamoji jėga F, lygi kūno išstumto skysčio ar dujų sunkiui; jos veikimo taškas –… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    закон Архимеда - Archimedo dėsnis statusas T sritis fizika atitikmenys: angl. Archimedes law; Archimedes principle vok. Archimedisches Gesetz, n; Archimedisches Prinzip, n rus. архимедов принцип, m; закон Архимеда, m pranc. principe d’Archimède, m; théorème… … Fizikos terminų žodynas

    АРХИМЕДА ЗАКОН: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу вытесненной им жидкости. Закон Архимеда справедлив и для газов … Энциклопедический словарь

    закон архімеда - закон Архимеда Archimed’s law *Archimedisches Prinzip – на занурене в рідину тіло діє вертикально напрямлена вверх сила, що дорівнює силі тяжіння рідини, об єм якої є рівним об’ємові зануреного тіла. Якщо сила тяжіння тіла G більша… … Гірничий енциклопедичний словник

    У этого термина существуют и другие значения, см. Закон (значения). Физический закон эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая связь между повторяющимися явлениями, процессами и… … Википедия

    Архимеда закон - Архимеда закон: F выталкивающая сила; P сила тяжести, действующая на тело. АРХИМЕДА ЗАКОН: на всякое тело, погруженное в жидкость, действует выталкивающая сила, направленная вверх, равная весу вытесненной им жидкости и приложенная к центру… … Иллюстрированный энциклопедический словарь

    Закон статики жидкостей и газов, согласно которому на всякое тело, погруженное в жидкость (или газ), действует со стороны этой жидкости (газа) поддерживающая сила, равная весу вытесненной телом жидкости (газа), направленная вверх и… … Большая советская энциклопедия

    Закон статики жидкостей и газов, согласно к рому на всякое тело, погружённое в жидкость (или газ), действует со стороны этой жидкости (газа) выталкивающая сила, равная весу вытесненной телом жидкости (газа), направленная по вертикали вверх и… … Физическая энциклопедия