Геометрическая оптика егэ по физике. Глаз как оптическая система. «Система подготовки учащихся к ЕГЭ

Все формулы взяты в строгом соответствии с Федеральным институтом педагогических измерений (ФИПИ)

3.6 ГЕОМЕТРИЧЕСКАЯ ОПТИКА

3.6.1 Прямолинейное распространение света в однородной среде. Луч света

ПОСТУЛАТ 1

В однородной среде свет распространяется прямолинейно.

ПОСТУЛАТ 2

Пересекающиеся световые лучи не взаимодействуют друг с другом.

Луч – часть прямой, указывающей направление распространения света.

3.6.2 Законы отражения света

1)Падающий луч , отражённый луч и перпендикуляр к границе двух сред , восставленный в точке падения луча , лежат в одной плоскости .

2)Угол падения луча а равен углу отражения луча ß . Углы падения и отражения измеряются между направлением лучей и перпендикуляром .

3.6.3 Построение изображений в плоском зеркале

Построение изображения точечного источника света

S – точечного источника света
MN – зеркальную поверхность
На нее падают расходящиеся лучи SO, SO 1 , SO 2
По закону отражения эти лучи отражаются под таким же углом:
SO под углом 0 0 ,
SO 1 под углом β 1 = α 1 ,
SO 2 под углом β 2 = α 2
В глаз попадает расходящийся пучок света.
Если продолжить отраженные лучи за зеркало, то они сойдутся в точке S 1 .
В глаз попадает расходящийся пучок света, как будто исходящий из точки S 1 .
Эта точка называется мнимым изображением точки S.

Построение изображения предмета

  1. К зеркалу прикладываем линейку так, чтобы одна сторона прямого угла лежала вдоль зеркала.
  2. Двигаем линейку так, чтобы точка, которую хотим построить лежала на другой стороне прямого угла
  3. Проводим линию от точки А до зеркала и продляем ее за зеркало на такое же расстояние и получаем точку А 1 .
  4. Аналогично все проделываем для точки В и получаем точку В 1
  5. Соединяем точку А 1 и точку В 1 , получили изображение А 1 В 1 предмета АВ.

Изображение должно быть таким же по размерам, как и предмет, находиться за зеркалом на таком же расстоянии, как и предмет перед зеркалом.

3.6.4 Законы преломления света

  1. Падающий и преломлённый лучи и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.
  2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, равная относительному показателю преломления.

Преломление света:

Абсолютный показатель преломления:

Относительный показатель преломления:

Ход лучей в призме

Проходя через призму, белый цвет (луч) не только преломляется, но и разлагается в цветной радужный спектр.

Соотношение частот и длин волн при переходе монохроматического света через границу раздела двух оптических сред:

3.6.5 Полное внутреннее отражение

Предельный угол полного внутреннего отражения:

3.6.6 Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы:

3.6.7 Формула тонкой линзы:

Увеличение, даваемое линзой:

3.6.8 Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и отрезка прямой в собирающих и рассеивающих линзах и их системах

Собирающая линза

Если параллельные лучи будут падать на собирающуюся линзу, то они встретятся в фокусе, если же они будут выходить из мнимого фокуса и попадать на линзу, то после нее они пройдут параллельно друг другу.

Если же параллельные лучи пойдут под некоторым углом к основной оси, то они так же соберутся в одной точке, однако она будет назваться побочным фокусом, который находится в фокальной плоскости.

Правила хода лучей:

1. Лучи, попавшие в оптический центр, не изменяют траектории движения.

2. Параллельный к главной оси луч собирается в фокусе.

3. Чтобы понять, куда пойдет луч, падающий под некоторым углом на линзу, следует построить побочную ось, что будет ему параллельна.

Вести её следует до точки пересечения с фокально плоскостью. Это позволит определить побочный фокус.

Рассеивающая линза

В рассеивающейся линзе пучок собирается во мнимом фокусе и расходится за пределами линзы.

Если же лучи будут падать под некоторым углом к линзе, то они в любом случае будут расходиться, однако перед линзой соберутся в мнимом побочном фокусе.

Правила хода лучей:

1. Данное правило справедливо для всех линз — лучи, проходящие через оптический центр, не меняют траектории.

2. Если луч, параллельный главной оптической оси, попадает на линзу, то он рассеивается, но пересекает мнимый фокус.

3. Для определения побочного мнимого фокуса для луча, который падает на линзу под углом, следует провести побочную ось, параллельную ходу лучей.

Построение изображений

Если перед линзой находится некоторая точка, излучающая свет, то изображение от данной точки можно получить в случае пересечения лучей в фокусе.

Действительное изображение — лучи пересекаются в некоторой точке после того, как преломились.

Мнимое изображение — изображение из-за пересечения лучей вблизи мнимого фокуса.

Построение изображения в собирающей линзе

1. Расстояние от предмета до линзы больше, чем фокусное расстояние: d>F .

Для получения изображения направим один луч SO через центр линзы, а второй SX произвольный. Параллельно к произвольному расположим побочную оптическую ось OP до пересечения с фокальной плоскостью. Проведем луч через точку пересечения фокальной плоскости и побочной оси. Будем вести луч до тех пор, пока он не пересечется с лучом SO . В данной точке и покажем изображение.

Если светящаяся точка находится в некотором месте на оси, то поступаем таким же образом — ведем произвольный луч до линзы, параллельно ему побочную ось, после линзы пропускаем луч через точку пересечения фокальной плоскости и побочной оси. Место, где данный луч пересечет главную оптическую ось, и будет местом расположения изображения.

Существует так же более простой способ построения изображения. Однако, он используется только в том случае, когда светящаяся точка находится вне главной оси.

От предмета проводим два луча — один через оптический центр, а другой параллельно главной оси до пересечения с линзой. Когда второй луч пересек линзу, направляем его через фокус. Место, где пересекутся два луча — это и есть место для расположения изображения.

Полученные изображения от предметов после собирающей линзы

1. Предмет находится между первым и вторым фокусом, то есть 2F > d >F .

Если один край предмета находится на главной оси, то следует находить расположение за линзой только конечной его точки. Как проецировать точку, мы уже знаем.

Стоит отметить тот факт, что если тело находится между первым и вторым фокусами, то благодаря собирающей линзе его изображение получается перевернутым, увеличенным и действительным .

Увеличение находится следующим образом:

2. Изображение за вторым фокусом d > 2F .

Если местонахождение предмета сместилось левее относительно линзы, то в ту же сторону сместится и полученное изображение.

Изображение получается уменьшенное, перевернутое и действительное .

3. Расстояние до предмета меньше расстояния до фокуса: F > d .

В данном случае, если мы воспользуемся известными правилами и проведем один луч через центр линзы, а второй параллельно, а потом через фокус, то увидим, что они будут расходиться. Соединятся они только в том случае, если их продолжить перед линзой.

Данное изображение получится мнимое, увеличенное и прямое .

4. Расстояние до предмета равно расстоянию до фокуса: d = F .

Лучи после линзы идут параллельно — это значит, что изображения не будет.

Рассеивающая линза

Для данной линзы используем все те же правила, что и раньше. В результате построения аналогичных изображений, получим:

Вне зависимости от расположения предмета относительно рассеивающей линзы: изображение мнимое, прямое, увеличенное.

3.6.9 Фотоаппарат как оптический прибор

Глаз как оптическая система

Сначала лучи попадают на защитную часть глаза, называемую роговицей.

Роговица — это сферическое прозрачное тело, а, значит, она преломляет лучи, попавшие на нее.

В зависимости от того, на каком расстоянии находится предмет, хрусталик меняет радиусы кривизны, что улучшает фокусировку. Процесс, при котором хрусталик непроизвольно подстраивается к расстоянию предмета, называется аккомодация. Данный процесс происходит, когда мы смотри на приближающийся или отдаляющийся предмет.

Перевернутое и уменьшенное изображение попадает на сетчатку, где нервные окончания сканируют его, переворачивают и отправляют в мозг.

Проблемы со зрением

Как известно, существует две основных проблемы со зрением: дальнозоркость и близорукость. Обе болезни описываются исключительно с точки зрения физики, а объясняются свойствами и толщиной линзы (хрусталика).

Если лучи от предмета соединяются перед сетчаткой, то человек страдает на близорукость .

Исправить данную проблему можно с помощью рассеивающей линзы, то есть именно поэтому больным выписывают очки.

Дальнозоркость — при такой болезни лучи соединяются после сетчатки, то есть фокус находится за пределами глаза.

Для исправления такого зрения используют очки с собирающими линзами.

Кроме природного оптического прибора существуют и искусственные: микроскопы, телескопы, очки, камеры и прочие предметы. Все они имеют аналогичное строение. Для улучшения или увеличения изображения используется система из линз (в микроскопе, телескопе).

Фотоаппарат

Искусственным оптическим прибором можно назвать фотоаппарат. Рассматривать строение современных фотоаппаратов — достаточно сложно. Поэтому в школьном курсе физики рассмотрим самую простую модель, один из первых фотоаппаратов.

Основным оптическим преобразователем, который способен зафиксировать большой объект на пленке, является объектив. Объектив состоит из одной или более линз, которые позволяют фиксировать изображение. Объектив имеет возможность изменять положение линз относительно друг друга, чтобы фокусировать изображение, то есть делать его четким. Все мы знаем, как выглядит сфокусированное изображение — оно четкое, полностью описывает все детали предмета. Если же линзы в объективе не сфокусированы, то изображение получается нечетким и размытым. Аналогичным образом видит человек, обладающим плохим зрением, поскольку изображение не попадает в фокус.

Чтобы получить изображение от отражения света для начала необходимо открыть затвор — только в данном случае пленка будет освещаться в момент фотографирования. Чтобы обеспечить необходимый поток света, его регулируют с помощью диафрагмы.

В результате преломления лучей на линзах объектива, на пленке можно получить перевернутое, действительное и уменьшенное изображение.

Свеча находится на расстоянии =3, 75 м от экрана. Между свечой и экраном помещают собирающую линзу, которая дает на экране четкое изображение свечи при двух положениях линзы. Найти фокусное расстояние линзы F, если расстояние между положениями линзы b =0, 75 м.

Объективы современных фотоаппаратов имеют переменное фокусное расстояние. При изменении фокусного расстояния «наводка на резкость» не сбивается. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0, 05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оказалось, что это расстояние равно 5 м, если фокусное расстояние объектива 50 мм. Как изменится это расстояние, если, не меняя «относительного отверстия» изменить фокусное расстояние объектива до 25 мм? («Относительное отверстие» – это отношение фокусного расстояния к диаметру входного отверстия объектива.) При расчётах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна F D d b f

Решение. 1. Выразим расстояние d из формулы тонкой линзы: (1) 2. Из подобия треугольников следует: (2) где D – диаметр линзы, b – диаметр пятна на экране. 3. Решаем совместно (1) и (2) и получаем значение d: (3), 4. По условию задачи «относительное отверстие» с = F/D величина постоянна, значит они пропорциональны другу. С уменьшением фокусного расстояния, во столько же раз должен уменьшится диаметр линзы. Значит, при уменьшении в два раза фокусного расстояния в четыре раза уменьшается расстояние, с которого можно считать предмет бесконечно далеким.

Решение 1. Определить, на каком расстоянии от линзы находится мнимое изображение источника S`: , От зеркала – на расстоянии 7 см. 2. Однако свет отражается от зеркала и образует действительное изображение в точке S``. Отраженный луч симметричен, откуда, зная расстояние между зеркалом и линзой, можно найти, на каком расстоянии от линзы оно находится. Х = 8 – 7 = 1 см. Значит, от источника света его действительное изображение будет на расстоянии 8, 5 см.

Линза + плоское зеркало Плоское зеркало вплотную прижато к тонкой собирающей линзе с фокусным расстоянием F. Изображение предмета находится на расстоянии 2 F от линзы. С каким увеличением изображен предмет? Решение: Оптическая система имеет оптическую силу равную Do = D 1 + D 2 + Dз. Это обосновывается тем, что луч два раза преломляется и один раз отражается, Dз – оптическая сила плоского зеркала, которая равна 0. Значит, система имеет фокусное расстояние F/2. Отсюда можно определить расстояние от источника до линзы d = 2 F/3, и увеличение равно Г = 3.

1. На каком расстоянии друг от друга следует расположить две линзы: сначала рассеивающую с фокусным расстоянием 4 см, затем собирающую с фокусным расстоянием 9 см, чтобы пучок параллельных главной оптической оси лучей, пройдя обе линзы, оставался параллельным? 2. На каком расстоянии друг от друга следует расположить две линзы: сначала собирающую с фокусным расстоянием 30 см, затем рассеивающую с фокусным расстоянием 20 см, чтобы пучок параллельных главной оптической оси лучей, пройдя обе линзы, оставался параллельным? Линза + линза

Одна сторона толстой стеклянной пластины имеет ступенчатую поверхность, как показано на рисунке. На пластину, перпендикулярно ее поверхности, падает световой пучок, который после отражения от пластины собирается линзой. Длина падающей световой волны l. При каком наименьшем из указанных значений высоты ступеньки d интенсивность света в фокусе линзы будет минимальной?

1. Небольшой груз, подвешенный на нити длиной 2, 5 м, совершает гармонические колебания с амплитудой 0, 1 м. При помощи собирающей линзы с фокусным расстоянием 0, 2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0, 5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебания маятника и плоскости экрана. Определить максимальную скорость изображения груза на экране. Обозначим максимальную скорость маятника υмакс = Aω и изображения υ`макс =A`ω. (1). 2) Связь между амплитудами можно определить по формуле тонкой линзы с использованием линейного поперечного увеличения: 3. Частота колебания маятника равна Отсюда А` = A(f - F)/F (2), 4) Подставим (2) в формулу (1) и определим искомую величину:

Боковая сторона прямоугольной трапеции АВСД примыкающей к ее прямым углам, расположена на главной оптической оси тонкой линзы. Линза создает действительное изображение трапеции в виде трапеции с теми же самыми углами. Если повернуть трапецию АВСД на 1800 вокруг стороны АВ, то линза создает изображение трапеции в виде прямоугольника. С каким увеличением отображается сторона АВ? В D А

В C 2 F D A 2 F F D` A` C` C`` В` 1. Построить изображение трапеции, соответствующее условию задачи «с теми же самыми углами» . Это значит, что сторона ВС до линзы и после линзы должны лежать на одной прямой. Это будет в том случае, если эта прямая проходит через двойной фокус. Второй луч выгоднее провести через фокус, Получается трапеция A`B`C`D`. 2. По условию задачи при повороте трапеции через АВ изображение получается в виде прямоугольника. Построим его. Луч, который проходит через фокус через новую точку С дает ее новое изображение на уровне B`. Только, если АВ расположена в середине отрезка возможно такое. 3. На основе формулы тонкой линзы, с учетом d = 2/3 F, получаем f = 3 F, Соответственно, увеличение стороны АВ равно Г = f/d = 2

Тонкая стеклянная бипризма с преломляющим углом 0, 05 рад, показателем преломления 1, 5 и шириной 20 см стоит вертикально в пучке параллельных световых лучей. Найдите расстояние от бипризмы до экрана, при котором ширина тени в центре экрана равна ширине бипризмы Положение экрана и изображения на нем

Свет – это электромагнитные волны, длины волн которых лежат для среднего глаза человека в пределах от 400 до 760 нм. В этих пределах свет называется видимым . Свет с наибольшей длиной волны кажется нам красным, а с наименьшей – фиолетовым. Запомнить чередование цветов спектра легко с помощью поговорки «К аждый О хотник Ж елает З нать, Г де С идит Ф азан». Первые буквы слов поговорки соответствуют первым буквам основных цветов спектра в порядке убывания длины волны (и соответственно возрастания частоты): «К расный – О ранжевый – Ж елтый – З еленый – Г олубой – С иний – Ф иолетовый». Свет с большими, чем у красного, длинами волн, называется инфракрасным . Его наш глаз не замечает, но наша кожа фиксирует такие волны в виде теплового излучения. Свет с меньшими, чем у фиолетового, длинами волн, называется ультрафиолетовым .

Электромагнитные волны (и, в частности, световые волны , или просто свет ) – это распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы электрической напряженности и магнитной индукции перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Световые волны, как и любые другие электромагнитные волны, распространяются в веществе с конечной скоростью, которая может быть рассчитана по формуле:

где: ε и μ – диэлектрическая и магнитная проницаемости вещества, ε 0 и μ 0 – электрическая и магнитная постоянные: ε 0 = 8,85419·10 –12 Ф/м, μ 0 = 1,25664·10 –6 Гн/м. Скорость света в вакууме (где ε = μ = 1) постоянна и равна с = 3∙10 8 м/с, она также может быть вычислена по формуле:

Скорость света в вакууме является одной из фундаментальных физических постоянных. Если свет распространяется в какой-либо среде, то скорость его распространения также выражается следующим соотношением:

где: n – показатель преломления вещества – физическая величина, показывающая во сколько раз скорость света в среде меньше чем в вакууме. Показатель преломления, как видно из предыдущих формул, может быть рассчитан следующим образом:

  • Свет переносит энергию. При распространении световых волн возникает поток электромагнитной энергии.
  • Световые волны испускаются в виде отдельных квантов электромагнитного излучения (фотонов) атомами или молекулами.

Кроме света существуют и другие виды электромагнитных волн. Далее они перечислены по уменьшению длины волны (и соответственно, по возрастанию частоты):

  • Радиоволны;
  • Инфракрасное излучение;
  • Видимый свет;
  • Ультрафиолетовое излучение;
  • Рентгеновское излучение;
  • Гамма-излучение.

Интерференция

Интерференция – одно из ярких проявлений волновой природы света. Оно связано с перераспределением световой энергии в пространстве при наложении так называемых когерентных волн, то есть волн, имеющих одинаковые частоты и постоянную разность фаз. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

Для расчета интерференции используется понятие оптической длины пути . Пусть свет прошел расстояние L в среде с показанием преломления n . Тогда его оптическая длина пути рассчитывается по формуле:

Для интерференции необходимо наложение хотя бы двух лучей. Для них вычисляется оптическая разность хода (разность оптических длин) по следующей формуле:

Именно эта величина и определяет, что получится при интерференции: минимум или максимум. Запомните следующее: интерференционный максимум (светлая полоса) наблюдается в тех точках пространства, в которых выполняется следующее условие:

При m = 0 наблюдается максимум нулевого порядка, при m = ±1 максимум первого порядка и так далее. Интерференционный минимум (темная полоса) наблюдается при выполнении следующего условия:

Разность фаз колебаний при этом составляет:

При первом нечетном числе (единица) будет минимум первого порядка, при втором (тройка) минимум второго порядка и т.д. Минимума нулевого порядка не бывает.

Дифракция. Дифракционная решетка

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий, размеры которых сопоставимы с длиной волны света (огибание светом препятствий). Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени (то есть быть там, где его быть не должно). Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая длина решетки достигает 10–15 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50–100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки.

При нормальном падении света на дифракционную решетку в некоторых направлениях (помимо того, в котором изначально падал свет) наблюдаются максимумы. Для того, чтобы наблюдался интерференционный максимум , должно выполняться следующее условие:

где: d – период (или постоянная) решетки (расстояние между соседними штрихами), m – целое число, которое называется порядком дифракционного максимума. В тех точках экрана, для которых это условие выполнено, располагаются так называемые главные максимумы дифракционной картины.

Законы геометрической оптики

Геометрическая оптика – это раздел физики, в котором не учитываются волновые свойства света. Основные законы геометрической оптики были известны задолго до установления физической природы света.

Оптически однородная среда - это среда, во всем объеме которой показатель преломления остаётся неизменным.

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Этот закон приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны (в этом случае наблюдается дифракция).

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а частично пройти через границу и распространяться во второй среде.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α . Заметьте, что все углы в оптике измеряются от перпендикуляра к границе раздела двух сред.

Закон преломления света (закон Снеллиуса): падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред, и определяется выражением:

Закон преломления был экспериментально установлен голландским ученым В.Снеллиусом в 1621 году. Постоянную величину n 21 называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Среду с большим значением абсолютного показателя называют оптически более плотной, а с меньшим – менее плотной. При переходе из менее плотной среды в более плотную луч «прижимается» к перпендикуляру, а при переходе из более плотной в менее плотную – «удаляется» от перпендикуляра. Единственный случай, когда луч не преломляется, это если угол падения равен 0 (то есть лучи перпендикулярны границе раздела сред).

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного внутреннего отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения . Для угла падения α = α пр, sinβ = 1, так как β = 90°, это значит, что преломленный луч идет вдоль самой границы раздела, при этом, согласно закону Снеллиуса, выполняется следующее условие:

Как только угол падения становиться больше предельного, то преломленный луч уже не просто идет вдоль границы, а он и вовсе не появляется, так как его синус теперь уж должен быть больше единицы, а такого не может быть.

Линзы

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы бывают собирающими и рассеивающими . Если показатель преломления линзы больше, чем окружающей среды, то собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше. Если показатель преломления линзы меньше, чем окружающей среды, то всё наоборот.

Прямая, проходящая через центры кривизны сферических поверхностей, называется главной оптической осью линзы . В случае тонких линз можно приближенно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы . У тонкой линзы имеются два главных фокуса, симметрично расположенных относительно линзы на главной оптической оси. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием . Оно обозначается той же буквой F .

Формула линзы

Основное свойство линз – способность давать изображения предметов. Изображение – это точка пространства, где пересекаются лучи (или их продолжения), испущенные источником после преломления в линзе. Изображения бывают прямыми и перевернутыми , действительными (пересекаются сами лучи) и мнимыми (пересекаются продолжения лучей), увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.

Для простоты можно запомнить, что изображение точки будет точкой. Изображение точки, лежащей на главной оптической оси, лежит на главной оптической оси. Изображение отрезка – отрезок. Если отрезок перпендикулярен главной оптической оси, то его изображение перпендикулярно главной оптической оси. А вот если отрезок наклонен к главной оптической оси под некоторым углом, то его изображение будет наклонено уже под некоторым другим углом.

Изображения можно также рассчитать с помощью формулы тонкой линзы . Если кратчайшее расстояние от предмета до линзы обозначить через d , а кратчайшее расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы . Единица измерения оптической силы является 1 диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0. Оптическая сила рассеивающей линзы также отрицательна.

Величины d и f также подчиняются определенному правилу знаков: f > 0 – для действительных изображений; f < 0 – для мнимых изображений. Перед d знак «–» ставится только в том случае, когда на линзу падает сходящийся пучок лучей. Тогда их мысленно продлевают до пересечения за линзой, помещают туда воображаемый источник света, и определяют для него расстояние d .

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета. Для линейного увеличения линзы существует формула:

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    «Система подготовки учащихся к ЕГЭ.

    Разбор проблемных задач

    из КИМов ЕГЭ-2010»

    (практикум)


    1. При коротком замыкании выводов аккумулятора сила тока в цепи равна 12 А. При подключении к выводам аккумулятора электрической лампы электрическим сопротивлением 5 Ом сила тока в цепи равна 2 А. По результатам этих экспериментов определите внутреннее сопротивление аккумулятора.

    Дано: Решение:

    I к.з. = 12 А I к.з. = ε / r I = ε /( R+r)

    R = 5 Ом ε = I к . з . ∙r ε = I (R + r)

    I = 2 А I к . з . ∙r = I (R + r)

    I к . з . ∙r = I∙R + I∙r

    r - ? I к . з . ∙r - I∙r = I∙R

    r (I к . з . – I) = I∙R

    r = IR /( I к.з. - I )

    r = 2 А∙5 Ом/(12А - 2А) =1 Ом

    Ответ: 1 Ом


    2. Найти внутреннее сопротивление и ЭДС источника тока, если при силе тока 30 А мощность во внешней цепи равна 180 Вт, а при силе тока 10 А эта мощность равна 100 Вт.

    Дано: Решение:

    Р 1 = 180 Вт Р 1 = I 1 2 R 1 Р 2 = I 2 2 R 2 R 1 ≠ R 2

    I 1 = 30 А R 1 = Р 1 / I 1 2 R 2 = Р 2 / I 2 2

    P 2 = 100 Вт ε = I 1 (R 1 + r) ε = I 2 (R 2 + r)

    I 2 = 10 А ε = I 1 ( Р 1 / I 1 2 + r) ε = I 2 ( Р 2 / I 2 2 + r)

    ε - ? r - ? I 1 ( Р 1 / I 1 2 + r) = I 2 ( Р 2 / I 2 2 + r)

    Р 1 / I 1 + I 1 ∙ r = Р 2 / I 2 + I 2 ∙r

    I 1 ∙ r – I 2 ∙ r = Р 2 / I 2 - Р 1 / I 1

    r (I 1 – I 2 ) = Р 2 / I 2 - Р 1 / I 1

    r (I 1 – I 2 ) = (I 1 P 2 -I 2 P 1 ) / I 1 I 2 r = (I 1 P 2 -I 2 P 1 ) / I 1 I 2 (I 1 – I 2 )

    r = 0,2 Ом

    ε = Р 1 / I 1 + I 1 r ε = 12 В

    Ответ: 12 В; 0,2 Ом


    3. Батарея состоит из 100 источников тока с ЭДС, равным 1 В и внутренним сопротивлением 0,1 Ом каждый. Источники соединили в группы по 5 штук последовательно, а эти группы соединили параллельно. Какая максимальная полезная мощность может выделяться в нагрузочном сопротивлении этой батареи?

    Дано: Решение:

    ε = 1 В ε – ЭДС 1 элемента, 5ε – ЭДС одной группы

    r = 0,1 Ом и всей батареи

    n = 5 r – внутреннее сопротивление элемента, 5 r – группы,

    N = 100 5 r /20 = r /4 – внутреннее сопротивление батареи.

    Р -? Максимальная мощность Р m будет при условии

    равенства внутреннего и внешнего сопротивлений

    R = r /4.

    Через нагрузочное сопротивление идёт ток

    I = 5 ε / (R + r /4) = 5 ε / (r /4 + r /4) = 5 ε∙ 4/2 r = 10 ε / r

    P m = I 2 R = 100 ε 2 / r 2 ∙ r /4 = 25 ε 2 / r

    P m = 250 Вт

    Ответ : 250 Вт




    Тренировочные задания ЕГЭ по теме «Геометрическая оптика».

    Раздел №1 «Линзы»

    1 часть (2 балла)

    1) Стеклянную собирающую линзу (показатель преломления стекла 1,54) перенесли из воздуха (показатель преломления воздуха равен 1) в воду (показатель преломления воды равен 1,33). Как изменились при этом фокусное расстояние и оптическая сила линзы? Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответах могут повторяться.

    1. увеличилась

    2. уменьшилась

    3. не изменилась

    2) Стеклянную собирающую линзу (показатель преломления стекла 1,54) перенесли из воздуха (показатель преломления воздуха равен 1) в воду (показатель преломления воды равен 1,33). Выберите два верных утверждения о характере изменений, произошедших с линзой.

    1. Линза из рассеивающей превратилась в собирающую.

    2. Фокусное расстояние линзы уменьшилось, а оптическая сила увеличилась.

    3. Линза из собирающей превратилась в рассеивающую.

    4. Фокусное расстояние линзы увеличилось, а оптическая сила уменьшилась.

    5.Линза осталась собирающей.

    3) F перпендикулярно этой оси. Расстояние от линзы до нити равно 2 F

    4) В опыте нить накала лампы расположена вблизи главной оптической оси тонкой линзы с фокусным расстоянием F перпендикулярно этой оси. Расстояние от линзы до нити равно 1,5 F . Сначала в опыте использовали рассеивающую линзу, а затем - собирающую. Установите соответствие между видом линзы и свойствами изображения.

    5) Предмет расположен на двойном фокусном расстоянии от тонкой собирающей линзы, передвигают к тройному фокусу. Как изменятся при этом расстояние от линзы до изображения предмета и размер изображения? Для каждой величины определите характер изменения:

    1. увеличилась

    2. уменьшилась

    3. не изменилась

    Раздел №2 «Прямолинейное распространение света».

    1 часть (1 балл)

    1) Тень на экране от предмета, освещенного точечным источником света, имеет размеры в 3 раза большие, чем сам предмет. Расстояние от источника света до предмета равно 1м. Определите расстояние от предмета до экрана.

    Ответ: _____ м

    2) Маленькая лампочка освещает экран через непрозрачную перегородку с круглым отверстием радиусом 0,2 м. Расстояние от лампочки до экрана в 4 раза больше расстояния от лампочки до перегородки. Каков радиус освещенного пятна на экране?

    Ответ: _____ м

    Раздел№3 «Формула тонкой линзы. Увеличение линзы».

    2 часть (1 балл)

    1) Предмет расположен перпендикулярно главной оптической оси тонкой собирающей линзы с оптической силой 10 дптр. Расстояние от предмета до линзы равно 30 см. Определите расстояние от линзы до изображения предмета.

    Ответ: _____ см

    2) Предмет расположен на расстоянии d = 5 см от тонкой собирающей линзы с фокусным расстоянием F =4см. Определите увеличение предмета, даваемое линзой.

    Ответ: _____ раз

    3) Предмет расположен на горизонтальной главной оптической оси тонкой собирающей линзы. Оптическая сила линзы равна 5 дптр. Изображение предмета действительное увеличенное. Отношение высоты изображения предмета к высоте самого предмета равно 2. Найдите расстояние от изображения до предмета до линзы.

    Ответ: _____ см

    4) F =2м дает на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

    Ответ: _____ м

    5) Линза с фокусным расстоянием F =1м дает на экране изображение предмета, уменьшенное в 4 раза. Каково расстояние от предмета до линзы?

    Ответ: _____ м

    6) Предмет высотой 6см расположен на горизонтальной главной оптической оси тонкой собирающей линзы на расстоянии 30 см от ее оптического центра. Высота действительного изображения предмета равна 12см. Найдите фокусное расстояние линзы.

    Ответ: _____ см

    Ответы.

    Задача

    Ответ

    45 или 54

    15см

    В 4 раза

    60см

    2,5м

    20см