Первый осциллограф. Принцип работы осциллографа

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

Московский государственный технологический

университет "Станкин"

Егорьевский технологический институт (филиал)

Изучение электронного осциллографа

Методические указания

К выполнению лабораторной работы.

ЕТИ.Ф. 01

Егорьевск 2008

Составитель ст. преподаватель Никифоров В.Ю.

Рецензент к.ф-м.н. Бурмистров А.В.

В методических указаниях рассмотрены: физические процессы в электронно-лучевой трубке, эмиссионные явления и их применения, возникновение электрического тока в вакууме, назначение, устройство и принцип действия электронного осциллографа и методы исследования электрических процессов с помощью осциллографа на примере осциллографа типа ОМЛ – 3М, принцип работы цифрового осциллографа.

Методические указания предназначены для студентов 1 курса, обучающихся по специальностям: 151001 «Технология машиностроения», 220301 «Автоматизация технологических процессов и производств (машиностроение)», 280202 «Инженерная защита окружающей среды» по дисциплине "Физика" при изучении раздела «Электричество и магнетизм».

Методические указания обсуждены на заседании кафедры естественно-научных дисциплин.

Протокол № от

Заведующий кафедрой А.П. Нилов

Методические указания рассмотрены и одобрены методическим советом института

Протокол № от

Председатель совета А.Д.Семенов


Изучение электронного осциллографа типа ОМЛ –3М

1 Цель работы: Ознакомиться с назначением, устройством и принципом действия электронного осциллографа и методами исследования электрических процессов с помощью осциллографа на примере осциллографа типа ОМЛ – 3М.

2 Оборудование: осциллограф электронно-лучевой ОМЛ – 3М, генераторы сигналов звуковой частоты (2 шт.), вольтметр, соединительные провода.

3.1 Изучить теоретический материал.

3.2 Ознакомиться с назначением и расположения органов управления осциллографа

3.3 Включить осциллограф

3.4 Собрать схему, подключив генераторы звуковой частоты к осциллографу.

3.5 Произвести измерения напряжения, частоты с помощью осциллографа при различных параметрах цепи.

3.6 Сравнить результаты измерений с результатами теоретических расчетов.

3.7 Вычислить погрешности.

3.8. Пронаблюдать и зафиксировать фигуры Лиссажу.

3.9 Сделать вывод.

3.10 Оформить отчет.

Теоретические сведения к работе

Назначение осциллографа


Электронный осциллограф – прибор, предназначенный для наблюдения, исследования и регистрации разнообразных быстропеременных электрических процессов путем их графического воспроизведения на экран электронно-лучевой трубки (ЭЛТ). Например, с помощью осциллографа можно измерить силу тока и напряжение, найти изменение их со временем, определить сдвиг фаз между ними, сравнить частоты и амплитуды различных переменных напряжений. Кроме того, осциллограф при применении соответствующих преобразователей позволяет исследовать неэлектрические процессы, например, измерять малые промежутки времени, кратковременные давления и т.д. Осциллограф характеризуется большим входным сопротивлением, высокой чувствительностью и малой инерционностью.

Электронно-лучевые трубки для осциллографирования, т. е. записи быстропеременных электрических явлений, были впервые задействованы в начале прошлого столетия, и одной из первых таких трубок была разработанная проф. Д. А. Рожанским в 1910-1911 гг.

Осциллограф малогабаритный любительский ОМЛ-ЗМ предназначен для наблюдения и исследования формы электрических сигналов в диапазоне частот от постоянного тока до 5МГц путем визуального наблюдения и исследования их временных и амплитудных значений, для настройки низкочастотной и высокочастотной бытовой радиоаппаратуры конструкторами-любителями.

Условное обозначение1У1 на задней панели свидетельствует о том, что изделие не предназначено для промышленных измерений.

11. ЭЛЕКТРОННЫЕ ОСЦИЛЛОГРАФЫ.

11.1 Общая характеристика.

Электронные осциллографы предназначены для:

а) визуального наблюдения формы электрических сигналов,

б) измерения параметров электрических сигналов.

Возможность наблюдения формы изменяющихся во времени электрических сигналов делает осциллограф удобным при определении различных параметров электрических сигналов и одним из самых универсальных измерительных приборов. Следующие достоинства осциллографов обусловили их широкое применение:

Широкий частотный диапазон;

Высокая чувствительность;

Большой динамический диапазон исследуемых сигналов;

высокое входное сопротивление и малая входная емкость.

В настоящее время выпускается множество осциллографов, различающихся назначением и характеристиками. Промышленность выпускает:

Аналоговые и цифровые электронные осциллографы;

Электронные осциллографы для наблюдения и измерения непрерывных и импульсных сигналов;

Универсальные электронные осциллографы, низкочастотные и высокочастотные электронные осциллографы;

Многофункциональные осциллографы со сменными блоками;

Запоминающие осциллографы для регистрации одиночных импульсов;

Одноканальные и многоканальные (в основном - двухканальные) и т.д.

В основе работы любого электронного осциллографа лежит преобразование исследуемого электрического сигнала в осциллограмму, формируемую на экране электронно-лучевой трубки или матричной индикаторной панели.

11.2 Электронно-лучевая трубка с электростатическим управлением.

В современных электронных осциллографах визуализация сформированной осциллограммы осуществляется с помощью электронно-лучевой трубки или матричной индикаторной панели. В настоящее время в осциллографах широкого применения преимущественно используются электронно-лучевые трубки (ЭЛТ) с электростатическим управлением.

Простейшая однолучевая ЭЛТ с электростатическим управлением представляет собой стеклянный баллон, из которого откачан воздух. Внутри баллона располагаются (см. рис. 1):

Подогревной катод - К;

Модулятор (сетка) – М;

Фокусирующий анод – А 1 ;

Ускоряющий анод – А2;

Две пары взаимно перпендикулярных отклоняющих пластин - ОП Х (горизонтальные) и ОП У (вертикальные);

Внутренняя поверхность дна баллона покрыта слоем люминофора, способного светиться в месте бомбардировки его электронами, образующего экран трубки Э.

Рисунок 1 – Устройство электронно-лучевой трубки

с электростатическим управлением

Совокупность электродов К, М, А 1 , А 2 называют электронной пушкой. Конструктивно электроды пушки выполняются в виде цилиндров, расположенных на оси трубки. Электронная пушка излучает узкий пучок электронов – электронный луч. Интенсивность электронного луча регулируется изменением отрицательного потенциала М относительно К, что приводит к изменению яркости свечения люминофора. Положительное напряжение на А 1 (относительно К) фокусирует поток электронов в узкий луч, позволяющий получать на экране ЭЛТ светящееся пятно малого диаметра. Для ускорения электронов луча до скорости, обеспечивающей свечение люминофора, на анод А 2 подается высокое положительное напряжение. Сформированный луч проходит между двумя парами отклоняющих пластин ОП х и ОП у и под действием напряжений, приложенных к этим пластинам, отклоняется соответственно по осям Х и У, вызывая смещение светящегося пятна на экране ЭЛТ.

При исследовании быстро протекающих процессов с малой частотой повторения или одиночных импульсов электронный луч не успевает приобрести достаточную кинетическую энергию и в достаточной мере возбудить люминофор. Поэтому свечение экрана может быть недостаточным. В современных ЭЛТ дополнительно ускоряют электроны луча при помощи третьего анода А 3 , подавая на него высокое положительное напряжение.

В современных ЭЛО применяются и более сложные ЭЛТ, в частности, многолучевые трубки для одновременного наблюдения 2-х и более сигналов.

11.3 Структурная схема эло.

Упрощенная структурная схема однолучевого ЭЛО представлена на рис. 2. Исследуемый сигнал U c , осциллограмму которого надо получить на экране ЭЛТ, подается на «Вход У». Через «Входной делитель» и «Усилитель канала У» он поступает на пластины ОП У и управляет перемещением луча в вертикальном направлении. Делитель необходим для работы с сигналами большой амплитуды.

Рисунок 2 – Структурная схема ЭЛО

Для управления перемещением луча в горизонтальном направлении служит «Генератор развертки», выходное напряжение которого поступает на ОП Х через «Усилитель канала Х» (режим линейной развертки). При необходимости «Генератор развертки» можно отключить, установив переключатель П2 в нижнее положение, и подать на ОП Х внешний сигнал со «Входа Х» через «Усилитель канала Х» (режим синусоидальной развертки, т.к. чаще всего подается гармонический сигнал).

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего !

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере.
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный . А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор»:). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.


Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная . А через кондер проходит только переменная .

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y , но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа . Каждый щуп содержит в себе сигнал и землю . Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100 , который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход . На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта . В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается:)

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y . Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Блок синхронизации.

Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю , позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению . Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой . Крайне желательно если он будет двухканальным . То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — . Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

ИЗУЧЕНИЕ ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА И ОЗНАКОМЛЕНИЕ С НЕКОТОРЫМИ ЕГО ПРИМЕНЕНИЯМИ

Уфа 2009

Ответственный за выпуск: проф. Альмухаметов Р.Ф.

Цель работы : ознакомление с устройством электронного осциллографа и принципом его работы, определение основных характеристик осциллографа, применение осциллографа в качестве измерительного прибора и для изучения некоторых процессов.

Оборудование : электронный осциллограф, звуковой генератор, генератор прямоугольных импульсов, магазин ёмкостей, магазин сопротивлений.

ПРИНЦИП РАБОТЫ ОСЦИЛЛОГРАФА

Осциллографом называется прибор, предназначенный для изучения электрических сигналов и измерения их параметров. С помощью осциллографа можно наблюдать на экране и изучить форму электрических сигналов, измерить напряжение и ток, определить частоту, измерить промежуток времени и т.д. Существует большое количество различных типов осциллографов. Все осциллографы содержат следующие основные блоки и узлы (рис.1):

1. электронно-лучевую трубку;

2. усилитель вертикального отклонения;

3. усилитель горизонтального отклонения;

4. блок развертки;

5. блок синхронизации;

6. блок питания.

Электронно-лучевая трубка предназначена для визуализации исследуемых сигналов с помощью электронного луча на люминесцирующем экране. Она представляет собой большую стеклянную колбу цилиндрической формы с расширением на одном конце (рис.2). Внутри электронно-лучевой трубки создается высокий вакуум для того, чтобы электроны, движущиеся внутри неё, не рассеивались на молекулах воздуха.

Электронно-лучевая трубка имеет экран Э, покрытый изнутри слоем люминофором. На хвостовой части имеется катод К, который нагревается с помощью нити накала НН путем пропускания через неё электрического тока. В результате нагрева электроны материала катода приобретают большую тепловую энергию и могут легко его покинуть. Это явление называется термо-электронной эмиссией. Для того, что направить электронный пучок в сторону экрана в трубке имеются два анода А 1 и А 2 . К анодам прикладывается положительное напряжение от источника питания относительно катода. Для получения узкого пучка электронов служить модулятор М . Модулятор имеет отрицательный потенциал относительно катода. Поэтому электроны, вылетевшие из катода под разными углами к его активной поверхности, сжимаются полем и направляется в отверстие модулятора. Так формируется электронный пучок. Интенсивность пучка, а следовательно, и яркость светящегося пятна на экране электронно-лучевой трубки можно регулировать изменением потенциала модулятора с помощью потенциометра R 1 , так как поле модулятора помимо сжимающего действий на поток оказывает еще и тормозящее действие на электроны.


После модулятора электронный поток попадает в электрическое поле первого анода А 1 . Первый анод выполнен в виде цилиндра, ось которого совпадает с осью трубки. Внутри цилиндра имеются несколько перегородок-диафрагм с отверстиями в центре, которые служат для ограничения поперечного сечения электронного пучка. На первый анод подается положительное относительно катода напряжение порядка нескольких сот вольт. Это поле ускоряет электроны и благодаря своей конфигурации сжимает электронный пучок. Второй анод А 2 располагаются непосредственно за первым анодом и представляет собой короткий цилиндр, закрытый на конце, обращенном к экрану, диафрагмой с отверстием в центре. На второй анод подаются более высокое положительное напряжение, чем на первый анод (1-5 кВ). Основная фокусировка пучка производится изменением потенциала первого анода с помощью потенциометра R 2 .

Внутреннюю поверхность стеклянного баллона трубки почти вплоть до экрана покрывают проводящим слоем и называют ее третьим анодом (Аз). Третий анод соединяют со вторым. При помощи электрических полей анодов электроны фокусируются на экране трубки и им сообщается необходимая скорость. Система электродов катод-модулятop-первый анод-второй анод образует так называемую электронную пушку .

Для отклонения электронного луча в горизонтальном и вертикальном направлениях служат пластины X и Y. При отсутствии отклоняющих напряжений на пластинах X и Y электронный луч попадает в центр экрана трубки. Если к пластинам Y или Х приложить разность потенциалов, то электронный луч будет отклоняться в вертикальном или горизонтальном направлении. Величина этого отклонения пропорциональна напряжению между пластинами. Если на пару горизонтально расположенных пластин Y 1 Y 2 подать периодически меняющееся напряжение, то электронный луч будет периодически перемещаться на экране в вертикальном направлении и описывать вертикальную линию. Напряжение, поданное между вертикально расположенными пластинами Х 1 Х 2 , заставляет двигаться электронный луч в горизонтальном направлении. При одновременной подаче напряжения между горизонтально и вертикально отклоняющими пластинами электронный луч претерпевает отклонение под действием обоих полей и описывает на экране сложную фигуру.

Усилители горизонтального и вертикального отклонения служат для предварительного усиления напряжений, подаваемых на пластины X и Y. Это связано с тем, что для заметного отклонения электронного луча на экране на пластины X и Y нужно подавать напряжение порядка нескольких сот вольт. Поэтому слабые сигналы необходимо усиливать до нужного уровня. В случае исследований сигналов с высоким напряжением для предотвращения выхода осциллографа из строя предусматривают схемы ослабления в кратное число раз- аттенюаторы. Часто эти схемы входят в единый блок с усилителем вертикального и горизонтального отклонения.



Блок развертки . Часто осциллограф используется для изучения временной зависимости различных сигналов. В этом случае необходимо, чтобы электронный луч равномерно перемещался вдоль оси Х от левого края экрана до правого, а затем быстро возвращался в исходное положение. Для этого напряжение, подаваемое на пластины Х , должно линейно нарастать в течение некоторого времени t 1 , а затем достаточно быстро (за время t 2) должно падать до первоначального значения. Такое напряжение называется пилообразным и оно вырабатывается генератором пилообразного напряжения (рис.3). Движение электронного луча во времени по оси Х называется разверткой . Схема, которая вырабатывает напряжение развертки, называется блоком развертки . Если напряжение развертки линейно растет со временем, то развертка называется линейной . Развертка бывает также циклической и более сложной.

Подадим на вертикально отклоняющие пластины переменное напряжение U y с периодом T c :

а на горизонтально отклоняющие пластины - напряжение развертки с периодом Т р . В этом случае луч будет одновременно участвовать в двух движениях. В зависимости от соотношения частот исследуемого сигнала и развертки на экране осциллографа можно получить различное число периодов изучаемого напряжения. При равенстве периодов Т р =Т с за время равномерного движения луча от левого края экрана до правого луч успевает совершить одно полное колебание также в вертикальном направлении и на экране получится один период исследуемого напряжения. Через время T p луч вернется в крайнее левое положение и снова начнет вычерчивать синусоиду, которая точно ляжет на первую, и на экране возникнет неподвижная осциллограмма. При T р =nT с (где n – целое число) осциллограмма будет представлять собой кривую из n периодов исследуемого напряжения.

При незначительном нарушении указанного выше условия осциллограмма начнет двигаться либо вправо, либо влево. Для достижения неподвижности осциллограммы на экране необходимо синхронизировать напряжение развертки с исследуемым сигналом. Для этих целей служит блок синхронизации . Синхронизация заключается в том, что начало каждого периода пилообразного напряжения принудительно совмещается с одной и той же фазой исследуемого сигнала. Тогда развертка начинается всегда в одной и той же точке на кривой временной зависимости исследуемого сигнала. Если в качестве напряжения синхронизации в осциллографе используется сам исследуемый сигнал, то говорят о внутренней синхронизации . Если для синхронизации используется какое-либо внешнее напряжение, не связанное с исследуемым сигналом, то говорят о внешней синхронизации . В осциллографах также предусматривается синхронизация от напряжения сети. В современных осциллографах генератор развертки может работать в двух режимах – в режиме непрерывной развертки и в режиме ждущей развертки. В режиме непрерывной развертки генератор развертки работает независимо от наличия сигнала на входе Y. В режиме ждущей развертки генератор развертки приводится в действие только при подаче исследуемого напряжения.

Блок питания предназначен для обеспечения необходимыми напряжениями электроды электронно-лучевой трубки, усилители, генераторы и другие схемы осциллографа.

Чувствительность трубки . Электронно-лучевая трубка характеризуется чувствительностью. Чувствительностью трубки к напряжению называется отклонение луча на экране, вызванное разностью потенциалов в 1 В на отклоняющих пластинах:

где k - чувствительность трубки; Z – отклонение луча на экране трубки; U - разность потенциалов между отклоняющими пласти­нами.

В статье будет подробно рассказано о том, как пользоваться осциллографом, что это такое и для каких целей он необходим. Никакая лаборатория не может просуществовать без измерительной аппаратуры или источников сигналов, напряжений и токов. А если вы планируете заниматься проектированием и созданием различных устройств (особенно если речь идет о высокочастотной технике, например, инверторных блоках питания), то без осциллографа сделать что-либо окажется проблематично.

Что такое осциллограф

Это такой прибор, который позволяет «увидеть» напряжение, а если точнее, то его форму в течение определенного промежутка времени. С его помощью можно измерить немало параметров - напряжение, частоту, силу тока, углы сдвигов фаз. Но чем хорош особенно этот прибор, так это тем, что он позволяет визуально оценить форму сигнала. Ведь в большинстве случаев именно она говорит о том, что конкретно происходит в цепи, в которой проводится измерение.

В некоторых случаях, например, напряжение может содержать не только постоянную, но и переменную составляющую. И форма второй может быть далека от идеальной синусоиды. Такой сигнал вольтметры, например, воспринимают с большими погрешностями. Стрелочные приборы будут выдавать одно значение, цифровые - намного меньшее, а вольтметры постоянного тока в - несколько раз больше. Самое точное измерение получается провести именно при помощи описываемого в статье прибора. И не имеет значения, применяется ли осциллограф Н3013 (как пользоваться, рассмотрено ниже) либо иной модели. Измерения происходят одинаково.

Особенности прибора

Реализовать это довольно просто - необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт. Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа.

Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.

Вход канала осциллографа

На передней панели имеется масштаб в вертикальной плоскости - он определяется при помощи регулятора чувствительности того канала, по которому происходит измерение. Существует возможность сменить масштаб не плавно, а ступенчато, при помощи переключателя. Какие задать значения можно с его помощью, смотрите на корпусе рядом с ним. На одной оси с этим переключателем находится регулятор для плавной корректировки (вот как пользоваться осциллографом С1-73 и аналогичными моделями).

На передней панели можно найти ручку с изображением двунаправленной стрелки. Если вращать ее, то график этого канала начнет перемещаться в вертикальной плоскости (вниз-вверх). Обратите внимание на то, что возле этой ручки имеется графическое обозначение, которое показывает, в какую сторону необходимо ее вращать, чтобы изменить значение множителя в меньшую или большую сторону. обоих каналов одинаковые. Кроме того, на передней панели имеются ручки регулировки контрастности, яркости, синхронизации. Стоит отметить, что цифровой карманный осциллограф (как пользоваться девайсом, мы рассматриваем) также имеет ряд настроек отображения графиков.

Как проводятся измерения

Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым. Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность - все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой. Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие - график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.

Как измерить напряжение

Чтобы провести измерение напряжения, необходимо использовать значения масштаба в вертикальной плоскости. Для начала нужно выполнить одно из этих действий:

  1. Соединить обе входные клеммы осциллографа между собой.
  2. Перевести переключатель режимов входа в положение, которое соответствует соединению с общим проводом. Затем регулятором, возле которого изображена двунаправленная стрелка, добиться того, чтобы линия развертки совпала с центральной (горизонтальной) чертой на экране.

Переводите прибор в режим измерений и подаете на вход сигнал, который необходимо исследовать. При этом в какое-либо рабочее положение устанавливается переключатель режимов. А вот как пользоваться портативным цифровым осциллографом? Немного сложнее - у таких приборов намного больше регулировок.

В результате можно видеть на экране некоторый график. Для точного измерения высоты следует использовать ручку с изображением горизонтальной двунаправленной стрелки. Добиваетесь того, чтобы верхняя точка графика попадала на расположенную в центре. На ней имеется градуировка, поэтому будет намного проще произвести расчет действующего напряжения в цепи.

Как измерить частоту

При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.

Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.

Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот - при уменьшении периода происходит увеличение частоты. Низкое значение погрешности - это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.

Как определяется сдвиг фаз

А теперь о том, как пользоваться осциллографом С1-112А для измерения сдвига фаз. Но для начала - определение. Сдвиг фаз - это характеристика, показывающая, как располагаются относительно друг друга два процесса (колебательных) в течение некоторого времени. Причем измерение происходит не в секундах, а в частях периода. Другими словами, единица измерения - это единицы угла. Если сигналы будут одинаково располагаться взаимно, то у них сдвиг фаз будет также одинаков. Причем это не зависит от частоты и периода - реальный масштаб графиков на горизонтальной (временной) оси может быть любым.

Максимальная точность измерения будет в том случае, если растянуть график на всю длину экрана. В аналоговых осциллографах график сигнала для каждого канала будет иметь одну яркость и цвет. Чтобы отличить эти графики друг от друга, необходимо сделать для каждого свою амплитуду. И напряжение, которое подается на первый канал, важно делать максимально большим. При этом получится намного лучше удерживать синхронизацией изображение на экране. Вот как пользоваться осциллографом С1-112А. Другие приборы отличаются в эксплуатации незначительно.