Усеченный конус и его объем. Объем конуса, его расчет

  • 22.09.2014

    Принцип действия. При нажатии кнопки первой цифры кода SA1 триггер DD1.1 переключится и на входе D триггера DD1.2 появится напряжение высокого уровня. Поэтому при нажатии очередной кнопки кода SA2 триггер DD1.2 изменяет свое состояние и подготавливает к переключению следующий триггер. В случае дальнейшего правильного набора последним сработает триггер DD2.2, и …

  • 03.10.2014

    Предлагаемое устройство стабилизирует напряжение до 24В и током до 2А с защитой от замыкания. В случае неустойчивого запуска стабилизатора следует применить синхронизацию от автономного генератора импульсов рис. 2 . Схема стабилизатора показана на рис.1. На VT1 VT2 собран триггер Шмитта, который управляет мощным регулирующим транзистором VT3. Детали: VT3 снабжен теплоотводом …

  • 20.09.2014

    Усилитель (см. фото) выполнен по традиционной схеме с автосмещением на лампах: выходные – AL5, драйверы – 6Г7, кенотрон – AZ1. Схема одного из двух каналов стереоусилителя показана на рис.1. С регулятора громкости сигнал поступает на сетку лампы 6Г7, усиливается и с анода этой лампы через разделительный конденсатор C4 подается на …

  • 15.11.2017

    NE555 - универсальный таймер - устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Представляет собой асинхронный RS-триггер со специфическими порогами входов, точно заданными аналоговыми компараторами и встроенным делителем напряжения (прецизионный триггер Шмитта с RS-триггером). Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих …

В геометрии усеченным конусом называется тело, которое образовано вращением прямоугольной трапеции около той ее боковой стороны, которая перпендикулярна основанию. Как рассчитывают объем усеченного конуса , всем известно еще из школьного курса геометрии, а на практике эти знания нередко применяют конструкторы различных машин и механизмов, разработчики некоторых товаров народного потребления, а также архитекторы.

Расчет объема усеченного конуса

Объем усеченного конуса рассчитывается по формуле:

V πh (R 2 + R × r + r 2)

h - высота конуса

r - радиус верхнего основания

R - радиус нижнего основания

V - объем усеченного конуса

π - 3,14

С такими геометрическими телами, как усеченные конусы , в повседневной жизни все сталкиваются достаточно часто, если не сказать – постоянно. Их форму имеют самые разнообразные емкости, широко используемые в быту: ведра, стаканы, некоторые чашки. Само собой разумеется, что конструкторы, которые их разрабатывали, наверняка использовали формулу, по которой рассчитывается объем усеченного конуса , поскольку эта величина имеет в данном случае очень большое значение, ведь именно она определяет такую важнейшую характеристику, как емкость изделия.

Инженерные сооружения, представляющие собой усеченные конусы , часто можно увидеть на крупных промышленных предприятиях, а также тепловых и атомных электростанциях. Именно такую форму имеют градирни – устройства, предназначенные для того, чтобы охлаждать большие объемы воды с помощью нагнетания встречного потока атмосферного воздуха. Чаще всего эти конструкции используются в тех случаях, когда требуется в короткие сроки существенно снизить температуру большого количества жидкости. Разработчиками этих сооружений в обязательном порядке определяется объем усеченного конуса формула для вычисления которого достаточно проста и известна всем тем, кто в свое время хорошо учился в средней школе.

Детали, имеющие эту геометрическую форму, достаточно часто встречаются в конструкции различных технических устройств. Например, зубчатые передачи, используемые в системах, где требуется изменить направление кинетической передачи, чаще всего реализуются с помощью конических шестеренок. Эти детали являются неотъемлемой частью самых разнообразных редукторов, а также автоматических и механических коробок переключения передач, используемых в современных автомобилях.

Форму усеченного конуса имеют некоторые широко применяемые на производстве режущие инструменты, например, фрезы. С их помощью можно обрабатывать наклонные поверхности под определенным углом. Для заточки резцов металлообрабатывающего и деревообрабатывающего оборудования часто используются абразивные круги, также представляющие собой усеченные конусы. Кроме того, объем усеченного конуса требуется определять конструкторам токарных и фрезерных станков, которые предполагают крепление режущего инструмента, оснащенного коническим хвостовиками (сверл, разверток и т.п.).

Геометрия как наука сформировалась в Древнем Египте и достигла высокого уровня развития. Известный философ Платон основал Академию, где пристальное внимание уделялось систематизации имеющихся знаний. Конус как одна из геометрических фигур впервые упоминается в известном трактате Евклида "Начала". Евклид был знаком с трудами Платона. Сейчас мало кто знает, что слово "конус" в переводе с греческого языка обозначает "сосновая шишка". Греческий математик Евклид, живший в Александрии, по праву считается основоположником геометрической алгебры. Древние греки не только стали преемниками знаний египтян, но и значительно расширили теорию.

История определения конуса

Геометрия как наука появилась из практических требований строительства и наблюдений за природой. Постепенно опытные знания обобщались, а свойства одних тел доказывались через другие. Древние греки ввели понятие аксиом и доказательств. Аксиомой называется утверждение, полученное практическим путем и не требующее доказательств.

В своей книге Евклид привел определение конуса как фигуры, которая получается вращением прямоугольного треугольника вокруг одного из катетов. Также ему принадлежит основная теорема, определяющая объем конуса. А доказал эту теорему древнегреческий математик Евдокс Книдский.

Другой математик древней Греции, Аполлоний Пергский, который был учеником Евклида, развил и изложил теорию конических поверхностей в своих книгах. Ему принадлежит определение конической поверхности и секущей к ней. Школьники наших дней изучают Евклидову геометрию, сохранившую основные теоремы и определения с древних времен.

Основные определения

Прямой круговой конус образован вращением прямоугольного треугольника вокруг одного катета. Как видно, понятие конуса не изменилось со времен Евклида.

Гипотенуза AS прямоугольного треугольника AOS при вращении вокруг катета OS образует боковую поверхность конуса, поэтому называется образующей. Катет OS треугольника превращается одновременно в высоту конуса и его ось. Точка S становится вершиной конуса. Катет AO, описав круг (основание), превратился в радиус конуса.

Если сверху провести плоскость через вершину и ось конуса, то можно увидеть, что полученное осевое сечение представляет собой равнобедренный треугольник, в котором ось является высотой треугольника.

где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.

Формула расчета объема конуса

Для расчета объема конуса используется следующая формула:

где S является площадью основания конуса. Так как основание — круг, его площадь рассчитывается так:

Отсюда следует:

где V — объем конуса;

n — число, равное 3,14;

R — радиус основания, соответствующий отрезку AO на рисунке 1;

H — высота, равная отрезку OS.

Усеченный конус, объем

Имеется прямой круговой конус. Если плоскостью, перпендикулярной высоте, отсечь верхнюю часть, то получится усеченный конус. Два его основания имеют форму круга с радиусами R 1 и R 2 .

Если прямой конус образуется вращением прямоугольного треугольника, то усеченный конус — вращением прямоугольной трапеции вокруг прямой стороны.

Объем усеченного конуса рассчитывается по следующей формуле:

V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.

Конус и его сечение плоскостью

Перу древнегреческого математика Аполлония Пергского принадлежит теоретический труд «Конические сечения». Благодаря его работам в геометрии появились определения кривых: параболы, эллипса, гиперболы. Рассмотрим, причем здесь конус.

Возьмем прямой круговой конус. Если плоскость пересекает его перпендикулярно оси, то в разрезе образуется круг. Когда секущая пересекает конус под углом к оси, то в разрезе получается эллипс.

Секущая плоскость, перпендикулярная основанию и параллельная оси конуса, образует на поверхности гиперболу. Плоскость, разрезающая конус под углом к основанию и параллельная касательной к конусу, создает на поверхности кривую, которую назвали параболой.

Решение задачи

Даже простая задача о том, как изготовить ведро определенного объема, требует знаний. Например, необходимо рассчитать размеры ведра, чтобы оно имело объем 10 литров.

V=10 л=10 дм 3 ;

Развертка конуса имеет вид, схематически приведенный на рисунке 3.

L - образующая конуса.

Чтобы узнать площадь поверхности ведра, которая вычисляется по следующей формуле:

S=n*(R 1 +R 2)*L,

необходимо вычислить образующую. Ее находим из величины объема V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.

Отсюда H=3V/n*(R 1 2 +R 2 2 +R 1 *R 2).

Усеченный конус образуется вращением прямоугольной трапеции, в которой боковая сторона является образующей конуса.

L 2 =(R 2- R 1) 2 +H 2 .

Теперь у нас имеются все данные, чтобы построить чертеж ведра.

Почему пожарные ведра имеют форму конуса?

Кто задумывался, почему пожарные ведра имеют, казалось бы, странную коническую форму? А это не просто так. Оказывается, коническое ведро при тушении пожара имеет много преимуществ перед обычным, имеющим форму усеченного конуса.

Во-первых, как оказывается, пожарное ведро быстрее наполняется водой и при переноске она не расплескивается. Конус, объем которого больше обычного ведра, за один раз позволяет перенести больше воды.

Во-вторых, воду из него можно выплеснуть на большее расстояние, чем из обычного ведра.

В-третьих, если коническое ведро сорвется с рук и упадет в огонь, то вся вода выливается на очаг возгорания.

Все перечисленные факторы позволяют сэкономить время — главный фактор при тушении пожара.

Практическое применение

У школьников часто возникает вопрос о том, зачем учить, как рассчитывать объем разных геометрических тел, в том числе конуса.

А инженеры-конструкторы постоянно сталкиваются с необходимостью рассчитать объем конических частей деталей механизмов. Это наконечники сверл, части токарных и фрезерных станков. Форма конуса позволят сверлам легко входить в материал, не требуя первоначальной наметки специальным инструментом.

Объем конуса имеет куча песка или земли, высыпанная на землю. При необходимости, проведя несложные измерения, можно рассчитать ее объем. У некоторых вызовет затруднение вопрос о том, как узнать радиус и высоту кучи песка. Вооружившись рулеткой, измеряем окружность холмика C. По формуле R=C/2n узнаем радиус. Перекинув веревку (рулетку) через вершину, находим длину образующей. А вычислить высоту по теореме Пифагора и объем не составит труда. Конечно, такой расчет приблизителен, но позволяет определить, не обманули вас, привезя тонну песка вместо куба.

Некоторые здания имеют форму усеченного конуса. Например, Останкинская телебашня приближается к форме конуса. Ее можно представить состоящей из двух конусов, поставленных друг на друга. Купола старинных замков и соборов представляют собой конус, объем которого древние зодчие рассчитывали с удивительной точностью.

Если внимательно присмотреться к окружающим предметам, то многие из них являются конусами:

  • воронки-лейки для наливания жидкостей;
  • рупор-громкоговоритель;
  • парковочные конусы;
  • абажур для торшера;
  • привычная новогодняя елочка;
  • духовые музыкальные инструменты.

Как видно из приведенных примеров, умение рассчитать объем конуса, площадь его поверхности необходимо в профессиональной и повседневной жизни. Надеемся, что статья придет вам на помощь.