Устройство сварочной горелки для газосварки. Самодельная инжекционная газовая горелка Инжекторные горелки работают при

В таких горелках образование газовоздушной смеси происходит путем подсасывания внутрь горелки первичного воздуха за счет энергии струи газа. Это явление называется инжекцией. В зависимости от объема инжектируемого первичного воздуха горелки бывают частичного и полного смешения.

В горелках частичного (неполного) смешения инжектируется только часть необходимого для сгорания воздуха, а остальной воздух поступает в зону горения из окружающего пространства. Такие горелки еще называют атмосферными или факельными. Они наиболее распространены и используются для газовых плит, водонагревателей, секционных котлов, мелких отопительных приборов.

Устройство инжекционной атмосферной горелки показано на рис. 2.6. Основными частями инжекционной горелки являются регулятор первичного воздуха 7, газовое сопло, или форсунка 1, смеситель и коллектор 6.

Рис. 2.6. Инжекционные атмосферные газовые горелки: а - низкого давления; б -для чугунного котла; I- форсунка, 2- инжектор;

3- конфузор; 4- диффузор; 5- отверстия; 6- коллектор; 7- регулятор первичного воздуха

Регулятор первичного воздуха представляет собой вращающийся диск или шайбу и служит для регулирования количества первичного воздуха, поступающего в горелку.

Газовое сопло, или форсунка, служит для придания газовой струе скорости, которая обеспечивает инжекцию необходимого воздуха.

Смеситель горелки состоит из трех частей - инжектора 2, конфузора 3 и диффузора 4. Инжектор служит для подсоса воздуха и создания разрежения. Конфузор служит для выравнивания струи газовоздушной смеси. В диффузоре происходит окончательное перемешивание газовоздушной смеси и повышение его давления за счет снижения скорости. Из диффузора газовоздушная смесь поступает в коллектор 6, который распределяет газовоздушную смесь по отверстиям. Форма коллектора и расположение отверстий зависят от типа горелок и их назначения.

Важными характеристиками инжекционных горелок неполного смешения являются коэффициент инжекции - отношение объемов инжектируемого воздуха и воздуха, необходимого для полного сгорания газа, и кратность инжекции - отношение объема первичного воздуха к расходу газа горелкой.

Достоинством инжекционных горелок является свойство их саморегулирования - поддержание постоянной пропорции между объемами подаваемого в горелку газа и инжектируемого воздуха.

Однако пределы устойчивости инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа в горелке можно только в определенных пределах.

Горелки полного смешения инжектируют весь воздух, необходимый для сжигания газа, что обеспечивается использованием газа повышенных давлений. Наиболее распространенные конструкции горелок полного смешения газа работают в диапазоне давления от 5 кПа до 0,5 МПа.

Горелка типа ИГК (инжекционная горелка конструкции Казанцева) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадки и пластинчатого стабилизатора.

Регулятор первичного воздуха горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси.

Пластинчатый стабилизатор обеспечивает устойчивую работу горелки без отрыва и проскока пламени в горелку в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм и расстоянием между ними 1,5 мм. Пластины стабилизатора стягиваются между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь. Такое устройство стабилизатора исключает отрыв пламени.

В других конструкциях горелок отрыв пламени предотвращается за счет снабжения горелок керамическими тоннелями или устройством в топке горок из огнеупорных материалов, которые нагреваются до высоких температур (больше температуры воспламенения газа), обеспечивая непрерывное воспламенение газовоздушной смеси.

Горелки разделяются на инжекторные и безынжекторные, однопламенные и многопламенные, для газообразных горючих (ацетиленовые и др.) и жидких (пары керосина). Наибольшее применение имеют инжекторные горелки, работающие на смеси ацетилена с кислородом.

Схема и принцип работы инжекторной горелки. Горелка состоит из двух основных частей - ствола и наконечника (рис. 64). Ствол имеет кислородный 1 и ацетиленовый 16 ниппели с трубками 3 и 15 , рукоятку 2 , корпус 4 с кислородным 5 и ацетиленовым 14 вентилями. С правой стороны горелки (если смотреть по направлению течения газов) находится кислородный вентиль 5 , а с левой стороны - ацетиленовый вентиль 14 . Вентили служат для пуска, регулирования расхода и прекращения подачи газа при гашении пламени. Наконечник, состоящий из инжектора 13 , смесительной камеры 12 и мундштука 7 , присоединяется к корпусу ствола горелки накидной гайкой.

Инжектор 13 представляет собой цилиндрическую деталь с центральным каналом малого диаметра - для кислорода и периферийными, радиально расположенными каналами - для ацетилена. Инжектор ввертывается в смесительную камеру наконечника и находится в собранной горелке между смесительной камерой и газоподводящими каналами корпуса горелки. Его назначение состоит в том, чтобы кислородной струей создавать разреженное состояние и засасывать ацетилен, поступающий под давлением не ниже 0,01 кгс/см 2 . Разрежение за инжектором достигается благодаря высокой скорости (порядка 300 м/с) кислородной струи. Давление кислорода, поступающего через вентиль 5, составляет от 0,5 до 4 кгс/см 2 .

Инжекторное устройство показано на рис. 65.

В смесительной камере кислород перемешивается с ацетиленом и смесь поступает в канал мундштука. Горючая смесь, выходящая из мундштука со скоростью 100 - 140 м/с, при зажигании горит, образуя ацетилено-кислородное пламя с температурой до 3150°С.

В комплект горелки входит несколько номеров наконечников. Для каждого номера наконечника установлены размеры каналов инжектора и размеры мундштука. В соответствии с этим изменяется расход кислорода и ацетилена при сварке.

Конструкция пропан-бутан-кислородных горелок отличается от ацетилено-кислородных горелок тем, что перед мундштуком имеется устройство 10 (рис. 64) для подогрева пропан-бутан-кислородной смеси. Дополнительный нагрев необходим для повышения температуры пламени. Обычный мундштук заменяется мундштуком измененной конструкции.

Техническая характеристика инжекторных горелок. В настоящее время промышленность выпускает сварочные горелки средней мощности - "Звезда", ГС-3 и малой мощности - "Звездочка" и ГС-2. В эксплуатации находятся также горелки "Москва" и "Малютка", выпускавшиеся до 1971 г.

Горелки "Москва", "Звезда" и ГС-3 предназначены для ручной ацетиленокислородной сварки стали толщиной 0,5 - 30 мм.

В комплект горелки средней мощности входит ствол и семь наконечников, присоединяемых к стволу горелки накидной гайкой (табл. 15), Обязательный комплект включает наконечники № 3, 4 и 6, чаще всего необходимые при выполнении сварочных работ, остальные наконечники поставляются по требованию потребителя. Горелки "Звездочка", ГС-2 и "Малютка" поставляются с наконечниками № 0, 1, 2, 3. В горелках "Звезда", ГС-3, "Звездочка" мундштуки изготовляются из бронзы Бр.Х 0,5, металла более стойкого, чем медь МЗ, применявшаяся для изготовления мундштуков горелок "Москва" и "Малютка". По этой причине срок службы выпускаемых горелок повышен по сравнению с выпускавшимися ранее.

Горелки типа ГС-3 работают с рукавами диаметром 9 мм. Горелки малой мощности "Малютка", "Звездочка" и ГС-2 предназначены для сварки сталей толщиной 0,2 - 4 мм. Горелки ГС-2 работают с резиновыми рукавами диаметром 6 мм.

Для пропан-бутан-кислородной смеси промышленность выпускает горелки типов ГЗУ-2-62-I и ГЗУ-2-62-II; первая предназначена для сварки стали толщиной от 0,5 до 7 мм, вторая - для подогрева металла. Для пламенной очистки поверхности металла от ржавчины, старой краски и т. д. выпускается ацетиленокислородная горелка Г АО (горелка ацетиленовая, очистка). Ширина поверхности, обрабатываемой горелкой за один проход, составляет 100 мм.

Для закалки металла выпускаются наконечники НАЗ-58 к стволу горелки ГС-3.

Сварку и другие виды обработки металлов пропан-бутан-кислородным пламенем можно производить горелкой ГЗМ-2-62М с четырьмя наконечниками.

Нарушение работы инжекторного устройства приводит к обратным ударам пламени и снижению запаса ацетилена в горючей смеси. Запас ацетилена представляет собой увеличение его расхода при полностью открытом ацетиленовом вентиле горелки по сравнению с паспортным расходом для данного номера мундштука. Причинами этих неполадок могут быть засорение кислородного канала, чрезмерное увеличение его диаметра вследствие износа ацетиленовых каналов, смещение инжектора по отношению к смесительной камере и наружные повреждения инжектора. Для нормальной работы горелки диаметр выходного канала мундштука должен быть равен диаметру канала смесительной камеры, а диаметр канала инжектора - в 3 раза меньше.

Посадочное место инжектора отрегулировано для инжекторов, входящих в комплект горелки.

Инжекторы горелки "Москва" можно использовать в горелке "Звезда", а инжекторы горелки "Малютка" - в горелке "Звездочка".

Проверка горелки на инжекцию (разрежение) проводится каждый раз перед началом работы и при смене наконечника. Для этого с ниппеля снимается ацетиленовый рукав и открывается кислородный вентиль. В ацетиленовом ниппеле исправной горелки должен создаваться подсос, обнаруживаемый прикосновением пальца к отверстию ниппеля.

Поддержание мундштука в надлежащем состоянии обеспечивает нормальное пламя по форме и размерам (см. гл. X). Мундштуки работают в условиях высокой температуры, подвергаются механическому разрушению от брызг при сварке и требуют ухода за ними (чистка, охлаждение и т. д.). Риски, задиры, нагар на стенках отверстия выходного канала мундштука снижают скорость выхода горючей смеси и способствуют образованию хлопков и обратных ударов, искажают форму пламени. Эти недостатки устраняют подрезкой торца мундштука на 0,5 - 1 мм, калибровкой и полировкой выходного отверстия.

После каждого ремонта детали горелок обязательно обезжиривают бензином марки Б-70.

Безынжекторные горелки работают под одинаковым давлением кислорода и ацетилена, равным от 0,1 до 0,8 кгс/см 2 . Эти горелки обеспечивают более постоянный состав горючей смеси в процессе работы. Безынжекторные горелки можно питать ацетиленом, либо от баллонов, либо от генераторов среднего давления.

Специальные горелки. Для газопламенной обработки материалов иногда целесообразно применять специальные горелки. Промышленностью выпускаются горелки для нагрева металла с целью термической обработки, удаления краски, ржавчины, горелки для пайки, сварки термопластов; пламенной наплавки и др. Принципиальное устройство специальных горелок во многом аналогично горелке, используемой для сварки металлов. Отличие состоит в форме и размерах мундштуков, а также в тепловой мощности, форме и размерах пламени. Специальные горелки выпускают для любого горючего газа.

Контрольные вопросы

1. Почему для газовой сварки из горючих газов употребляют главным образом ацетилен?

2. Расскажите о классификации ацетиленовых генераторов.

3. Какую роль выполняет в горелке инжектор?

4. Какое влияние оказывает инжекторное устройство и устройство мундштука на работу горелки?

5. Какие бывают специальные горелки?

Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок. В зависимости от количества воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.

Горелки с неполной инжекцией воздуха. В таких горелках к фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа и называются инжекционными горелками низкого давления .

Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции : отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м 3 газа необходимо 10 м 3 воздуха, а первичный воздух составляет 4 м 3 , то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м 3 сжигаемого газа инжектируется 4 м 3 воздуха, кратность инжекции равна 4.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Достоинство инжекционных горелок - это их свойство саморегулирования, то есть поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Горелки с полным предварительным смешением газа с воздухом. Инжекция воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт.

Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.

Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и с огнеупорными насадками.

Инжещионная горелка конструкции Казанцева состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рисунок ниже).

Инжекционная горелка Казанцева

1 - стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха

Регулятор первичного воздуха горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь. В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной.

В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготавливается с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не выходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется. Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси.

На рисунке ниже показана беспламенная панельная горелка. Поступающий в сопло из газопровода газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха. Образовавшаяся газовоздушная смесь через инжектор поступает в распределительную камеру, проходит по ниппелям и поступает в керамические тоннели. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера теплоизолирована от керамических призм слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенная панельная горелка

1 - тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.

Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65x45x12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рисунок ниже).

Горелки инфракрасного излучения

а - схема горелки: 1 - рефлектор; 2 - керамическая плитка; 3 - смеситель; 4 - сопло; 5 - корпус; 6 - сборная камера; б, в, г - соответственно горелки ГИИ-1, ГИИ-8 и ГК-1-38

Через сопло газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру и далее направляется в огневые отверстия керамической плитки. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени.

В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000 °С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.

Керамические плитки имеют около 600 огневых цилиндрических каналов, что составляет около 40 % поверхности плиток.

Плитки соединяют друг с другом специальной замазкой, состоящей из смеси шамотного порошка с цементом.

Если инфракрасные горелки работают на газе среднего давления, то применяют специальные плиты из жаропрочных пористых материалов. Вместо цилиндрических каналов у них узкие искривленные каналы, которые заканчиваются расширяющимися камерами сгорания.

При сжигании газа в многочисленных каналах различных насадок происходит нагрев внешних поверхностей каналов до температуры примерно 1000 "С. В результате поверхности приобретают оранжево-красный цвет и становятся источниками инфракрасных лучей, которые поглощаются различными предметами и вызывают их нагрев.

На рисунке б-г показаны наиболее распространенные типы инфракрасных горелок. У горелок ГИИ-1 имеются 21 керамическая плитка, рефлектор и распределительная коробка. С помощью горелок ГИИ можно обогревать помещения и различное оборудование. Горелки используют и для обогрева открытых площадок (спортивные площадки, кафе, помещения летнего типа и т. д.).

Горелку ГК-1-38 успешно применяют для подогрева строящихся стен и штукатурки, обогрева людей, работающих в зимних условиях. Горелка может работать на природном и сжиженном газах.

Сварка с помощью газа - это сварка с применением расплавленного металла. При этом процессе происходит нагрев краев металлических частей деталей до температуры плавления пламенем газовой горелки.

Высокая температура, при которой происходит плавление металла, образуется от воспламенения газа-кислородной смеси. Чтобы заполнить пустоты, которые возникают при совмещении краев металла, используют расплавленную присадочную проволоку.

Горелки для газовой сварки.

Чтобы получить сварочное пламя, необходимое для работы с металлами, применяется горелка. С ее помощью можно контролировать мощность, объем пламени в установленных пределах. Несмотря на всю внешнюю простоту изделия, горелка - это сложный и значимый элемент при сварке.

На рисунке № 1 изображено пламя газовой горелки с температурными показателями.

По своей конструкции горелки для газовой сваркиподразделяются на:

  • инжекторные;
  • безинжекторные.

По применяемому горючему:

  • ацетиленовые;
  • для других газов и жидкого горючего.

По порядку использования могут быть:

  • ручными,
  • машинными.

Инжекторные и безинжекторные горелки для газовой сварки.

Конструктивное наличие струйного насоса в горелке обусловлено уровнем давления, при котором в неё подаётся горючее. Если оно высокое, то дополнительного нагнетания не требуется, топливо подается под своим собственным. При низком давлении нужно большее количество газа, поэтому используется принудительная подача с помощью инжектора. Для создания сварочного пламени нужно получить качественную смесь кислорода и топлива в камере смешивания горелки.

Горелка без инжектора имеет более простое устройство. Топливо и кислород подаются в смеситель одновременно с помощью системы подачи, состоящей из шлангов, необходимого количества кранов (вентилей), ниппелей. В смесителе происходит образование однородной смеси.

Однородная смесь поступает по трубке наконечника на мундштук, воспламеняется и создает пламя для сварки. Чтобы процесс горения соответствовал необходимым требованиям, давление, с которым подается смесь из мундштука, должно быть в строго определенных пределах. Если скорость будет выше установленной, пламя, отрываясь от среза горелки, будет тухнуть. Если ниже, то смесь, попадая вовнутрь горелки, будет взрываться в ней. Скорость подачи горючей смеси (ацетилено-кислородной) варьируется от 70 до 160 м/сек, она зависит от вида мундштука, размеров канала, процентного состава смеси.

В горелках высокого давления может применяться водород или метан. Она проста в использовании и устройстве. Но, в сравнении с инжекторными горелками низкого давления, используются намного реже.

Работа горелки низкого давления.

Кислород под высоким давлением (около 4 атмосфер) поступает в горелку через систему подачи, состоящую из ниппеля, регулировочного крана. Проходит через инжектор с высокой скоростью. Под действием струи кислорода в камере струйного насоса создается давление ниже атмосферного и происходит засасывание горючего газа. Он поступает через ниппель и вентиль в камеру инжектора, а затем в камеру смешивания, соединяется с кислородом, и со скоростью в строгих пределах поступает по каналу на мундштук.

Расход кислорода не меняется, на него не влияют внешние факторы, в отличие от расхода применяемого газа. Повышение температуры мундштука и наконечника горелки, изменение давления, увеличение сопротивления повышают расход ацетилена.

Другие виды горелок.

В некоторых отраслях промышленности нашли применение горелки для газовой сварки, работающие на жидких горючих, таких как бензин или керосин. В основе принципа лежит распыление керосинно-кислородной смеси и испарение мелкокапельного горючего от нагрева с мундштука.

Используемые в настоящее время горелки в целях безаварийной эксплуатации должны соответствовать требованиям безопасности:

  • сварочное пламя должно быть определенной формы;
  • регулировка пламени в нужных пределах;
  • устойчивость к внешним воздействиям и безопасность эксплуатации;
  • удобство в применении.

Инжекционная газовая горелка низкого давления по принципу организации смешения газа с воздухом относится к газовым горелкам с частичным предварительным смешением.

Струя газа в горелке под давлением выходит из сопла (1) с большой скоростью и за счет своей энергии захватывает в конфузоре (2) воздух, увлекая его внутрь горелки. Смешение газа с воздухом происходит в смесителе, состоящем из конфузора (2), горловины (3) и диффузора (4). Разрежение, создаваемое инжектором, возрастает с увеличением давления газа в горелке, и при этом изменяется количество подсасываемого первичного воздуха (от 30 до 70%), необходимого для полного сгорания газа. Количество воздуха, поступающего в газовую горелку, можно изменять при помощи регулятора (6) первичного воздуха, представляющего собой шайбу, вращающуюся на резьбе. При вращении регулятора изменяется расстояние между шайбой и конфузором, и таким образом регулируется подача воздуха.

Инжекционная газовая горелка низкого давления:
1 - сопло; 2 - конфузор; 3 - горловина; 4 - диффузор; 5 - огневой насадок; 6 - регулятор первичного воздуха.

Для обеспечения полного сгорания топлива в газовой горелке часть воздуха поступает за счет разрежения в топке. Регулирование расхода вторичного воздуха производится путем изменения разрежения в топке.

Инжекционные горелки низкого давления выполняются огневыми насадками (5) разной формы.

Инжекционные газовые горелки обладают свойством саморегулирования, т.е. возможностью обеспечения постоянства соотношения между количеством поступающего в горелку газа и количеством подсасываемого ими первичного воздуха. При этом, если подача воздуха в горелку при помощи шайбы отрегулирована по цвету пламени или показанию газоанализатора на полное сгорание газа и газовая горелка работает спокойно без шума, то дальнейшее изменение ее нагрузки можно проводить, увеличивая или уменьшая только расход газа, не меняя положения воздушной шайбы.

Изменяя режим работы газовой горелки, необходимо следить за устойчивостью ее пламени, так как на характер горения газа влияют не только количество подаваемого в нее первичного воздуха, но и количество вторичного воздуха, поступающего в топку.

Инжекционная горелка среднего давления ИГК конструкции Ф.Ф.Казанцева относится к горелкам с полным предварительным смешением и устойчиво работает при давлении газа 2... 60 кПа (200... 6 000 мм вод. ст.).

Газ, поступающий в газовую горелку через газовое сопло (4), инжектирует воздух в необходимом для сжигания количестве. В смесителе (2), состоящем из конфузора, горловины и диффузора, осуществляется полное перемешивание газа с воздухом.

Инжекционная горелка ИГК среднего давления конструкции Ф. Ф. Казанцева:
1 - пластинчатый стабилизатор горения; 2 - смеситель; 3 - регулятор подачи воздуха; 4 - газовое сопло; 5 - гляделка.

В конце диффузора в газовой горелке установлен пластинчатый стабилизатор (1), который обеспечивает устойчивую работу горелок без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор горения состоит из тонких стальных пластин, расположенных на расстоянии примерно 1,5 мм одна от другой. Пластины стабилизатора стянуты между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов горения, за счет теплоты которых происходит непрерывное поджигание газовоздушной смеси. Фронт пламени удерживается на определенном расстоянии от устья горелки.

Регулирование подачи воздуха производится с помощью регулятора (3). На внутренней его поверхности укреплен клеем шумопоглощающий материал. В регуляторе выполнено смотровое окно — гляделка (5) для наблюдения за целостностью стабилизатора.

К недостаткам инжекционных горелок относятся:

  • значительные габариты горелок по длине, особенно горелок увеличенной производительности (например, горелка ИГК-250-00 номинальной производительностью 135 м3/ч имеет длину 1 914 мм);
  • высокий уровень шума у инжекционных горелок среднего давления при истечении газовой струи и инжектировании воздуха;
  • зависимость поступления вторичного воздуха от разрежения в топке (для инжекционных горелок низкого давления), плохие условия смесеобразования в топке, приводящие к необходимости увеличения общего коэффициента избытка воздуха до 1,3...1,5 и даже выше для обеспечения полного сгорания топлива.