Ядерный реактор: история создания и принцип действия. Как работает ядерный реактор

Ядерный реактор — устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

История

Самоподдерживающаяся управляемая цепная реакция деления ядер (кратко — цепная реакция) была впервые осуществлена в декабре 1942 г. Группа физиков Чикагского университета , возглавляемая Э. Ферми , построила первый в мире ядерный реактор, названный СР-1 . Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ураном.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова . Первый советский реактор Ф-1 выведен в критическое состояние 25 декабря 1946 г. Реактор Ф-1 набран из графитовых блоков и имеет форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1949 г. введён в действие реактор по производству плутония, а 27 июня 1954 г. вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, т. е. химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций — это минимум 107°К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез). Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Схематическое устройство гетерогенного реактора на тепловых нейтронах1 — управляющий стержень; 2 — биологическая защита; 3 — тепловая защита; 4 — замедлитель; 5 — ядерное топливо; 6 — теплоноситель.

Схематическое устройство гетерогенного реактора на тепловых нейтронах

    управляющий стержень;

    биологическая защита;

    тепловая защита;

    замедлитель;

    ядерное топливо;

    теплоноситель.

Конструкция

Любой ядерный реактор состоит из следующих частей:

    Активная зона с ядерным топливом и замедлителем;

    Отражатель нейтронов, окружающий активную зону;

    Теплоноситель;

    Система регулирования цепной реакции, в том числе аварийная защита

    Радиационная защита

    Система дистанционного управления

Основная характеристика реактора — его выходная мощность. Мощность в 1 МВт соответствует цепной реакции, при которой происходит 3·1016 делений в 1 сек.

Физические принципы работы

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

    k > 1 — цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;

    k < 1 — реакция затухает, реактор — подкритичен, ρ < 0;

    k = 1, ρ = 0 — число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

    ω есть доля полного числа образующихся в реакторе нейтронов, поглощённых в активной зоне реактора, или вероятность избежать нейтрону утечки из конечного объема.

    k 0 — коэффициент размножения нейтронов в активной зоне бесконечно больших размеров.

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k0, поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k0 определяет принципиальную способность среды размножать нейтроны

k0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

    μ — коэффициент размножения на быстрых нейтронах;

    φ — вероятность избежать резонансного захвата;

    θ — коэффициент использования тепловых нейтронов;

    η — выход нейтронов на одно поглощение.

Объёмы современных энергетических реакторов могут достигать сотен м 3 и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора — объём активной зоны реактора в критическом состоянии. Критическая масса — масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu — 0,5 кг. Теоретически, наименьшей критической массой обладает 251 Cf, для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e — 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К∞ — 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси Ra и Be, 252 Cf или других веществ.

Иодная яма

Иодная яма — состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона (135 Xe). Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1—2 суток).

Классификация

По характеру использования

По характеру использования ядерные реакторы делятся на:

    Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает несколько кВт;

    Исследовательские реакторы, в которых потоки нейтронов и γ-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 Мвт; выделяющаяся энергия, как правило, не используется.

    Изотопные (оружейные, промышленные) реакторы, используемые для наработки изотопов, используемых в ядерных вооружениях, например 239Pu.

    Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, при опреснении воды, для привода силовых установок кораблей и т. д.; Тепловая мощность современного энергетического реактора достигает 3—5 ГВт.

По спектру нейтронов

    Реактор на тепловых нейтронах («тепловой реактор»)

    Реактор на быстрых нейтронах («быстрый реактор»)

    Реактор на промежуточных нейтронах

По размещению топлива

    Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

    Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими элементами (ТВЭЛ’ами), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

По степени обогащения:

    Естественный уран

    Слабо обогащённый уран

    Чистый делящийся изотоп

По химическому составу:

    металлический U

    UO 2 (диоксид урана)

    UC (карбид урана) и т. д.

По виду теплоносителя

    H 2 O (вода, см. Водо-водяной реактор)

    Газ, (см. Графито-газовый реактор)

    Реактор с органическим теплоносителем

    Реактор с жидкометаллическим теплоносителем

    Реактор на расплавах солей

По роду замедлителя

    С (графит, см. Графито-газовый реактор, Графито-водный реактор)

    H 2 O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

    D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

    Гидриды металлов

    Без замедлителя

По конструкции

    Корпусные реакторы

    Канальные реакторы

По способу генерации пара

    Реактор с внешним парогенератором

    Кипящий реактор

В начале XXI века наиболее распространены гетерогенные ядерные реакторы на тепловых нейтронах с замедлителями — H 2 O, С, D 2 O и теплоносителями — H 2 O, газ, D 2 O, например, водо-водяные ВВЭР, канальные РБМК.

Перспективными являются также быстрые реакторы. Топливом в них служит 238U, что позволяет в десятки раз улучшить использование ядерного топлива по сравнению с тепловыми реакторами, это существенно увеличивает ресурсы ядерной энергетики.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы из кристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов. Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несуществен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для ее сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135 Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135 Xe T½ = 9,2 ч; выход при делении составляет 6—7%. Основная часть 135Xe образуется в результате распада 135 I (T½ = 6,8 ч). При отравлении Кэф изменяется на 1—3%. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

    К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность йодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см 2 ·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135 Xe.

    Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см 2 ·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1%). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в ядерном реакторе происходит по следующим схемам:

    235 U + n → 236 U + n → 237 U →(7 сут)→ 237 Np + n → 238 Np →(2,1 сут)→ 238 Pu

    238 U + n → 239 U →(23 мин)→ 239 Np →(2,3 сут)→ 239 Pu (+осколки) + n → 240 Pu + n → 241 Pu (+осколки) + n → 242 Pu + n → 243 Pu →(5 ч)→ 243 Am + n → 244 Am →(26 мин)→ 244 Cm

Время между стрелками обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239 Pu, причём тем быстрее (при фиксированном выгорании 235 U), чем меньше обогащение урана. Далее концентрация 239 Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238 U и 239 Pu. Характерное время установления равновесной концентрации 239 Pu ˜ 3/Ф лет (Ф в ед. 1013 нейтронов/см 2 ×сек). Изотопы 240 Pu, 241 Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в реакторе на 1 топлива. Эта величина составляет:

    ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;

    ˜ 20—30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3% 235U);

    до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1% ядерного топлива.

По мере выгорания топлива реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или постепенно, оставляя в работе ТВЭЛы разных «возрастов». Такой режим называется непрерывной перегрузкой топлива.

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, т. к. реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1—2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3%, через 1 ч — 1%, через сутки — 0,4%, через год — 0,05%.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 Гвт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4—1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Причём если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.

Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.

Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:

    Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;

    Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (т. е. мощность на выходе);

    Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.

В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.

Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).

На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определённых пределах, управление реактором производится без участия оператора.

На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности — система аварийной защиты.

У ядерных реакторов одна задача: расщепить атомы в результате контролируемой реакции и использовать выделенную энергию, чтобы генерировать электрическую мощность. На протяжении многих лет реакторы рассматривались и как чудо, и как угроза.

Когда первый коммерческий реактор США вошел в строй в Shippingport, штат Пенсильвания, в 1956 году, эта технология была расценена как источник энергии будущего, а некоторые полагали, что реакторы сделают выработку электричества слишком дешевой. Сейчас во всем мире построено 442 атомных реактора, около четверти из этих реакторов находятся в США. Мир пришел в зависимость от ядерных реакторов, вырабатывающих 14 процентов электроэнергии . Футуристы фантазировали даже об атомных автомобилях.

Когда в 1979 году на реакторе Блок 2 на электростанции Three Mile Island в штате Пенсильвания возникла неисправность системы охлаждения и, как следствие, частичное расплавление его радиоактивного топлива, теплые чувства по поводу реакторов радикально изменились. Несмотря на то, что было проведено блокирование разрушенного реактора и не возникло никакого серьезного радиоактивного излучения, многие люди начали рассматривать реакторы как слишком сложные и уязвимые, с потенциально катастрофическими последствиями. Люди также обеспокоились радиоактивными отходами из реакторов. В результате, строительство новых атомных станций в Соединенных Штатах остановилось. Когда более серьезная авария произошла на Чернобыльской АЭС в Советском Союзе в 1986 году, ядерная энергетика казалась обреченной.

Но в начале 2000-х, ядерные реакторы начали возвращаться, благодаря растущей потребности в энергии и уменьшении поставок ископаемого топлива, а также растущей обеспокоенности по поводу изменения климата в результате выбросов двуокиси углерода

Но в марте 2011 года случился еще один кризис — на этот раз от землетрясения сильно пострадала Фукусима 1 — атомная электростанция в Японии.

Использование ядерной реакции

Попросту говоря, в ядерном реакторе расщепляются атомы и высвобождают энергию, которая держит их части вместе.

Если вы подзабыли физику средней школы, мы напомним вам, как ядерное деление работает. Атомы похожи на крошечные солнечные системы, с ядром, вроде Солнца , и электронами, как планетами на орбите вокруг него. Ядро состоит из частиц, называемых протонами и нейтронами, которые связаны друг с другом. Силу, которая связывает элементы ядра — трудно даже представить. Она во много миллиардов раз сильнее, чем сила земного тяготения. Несмотря на эту огромную силу, можно расщепить ядро — стреляя по нему нейтронами. Когда это будет сделано, выделится много энергии. Когда атомы распадаются, их частицы врезаются в близлежащие атомы, расщепляя и их, а те, в свою очередь следующие, следующие и следующие. Возникает, так называемая, цепная реакция .

Уран, элемент с большими атомами, идеально подходит для процесса расщепления, потому, что сила, связывающая частицы его ядра, является относительно слабой по сравнению с другими элементами. Ядерные реакторы используют определенный изотоп, называемый У ран- 235 . Уран-235 является редким в природе, руда из урановых рудников содержит лишь около 0,7% Урана-235. Вот почему реакторы используют обогащенный У ран , который создается путем выделения и концентрирования Урана-235 посредством процесса диффузии газа.

Процесс цепной реакции можно создать в атомной бомбе, подобной тем, что были сброшены на японские города Хиросиму и Нагасаки во время Второй мировой войны. Но в ядерном реакторе цепная реакция контролируется вставкой управляющих стержней, изготовленных из материалов, таких, как кадмий, гафний или бор, которые поглощают часть нейтронов. Это по-прежнему позволяет процессу деления выделять достаточно энергии, чтобы нагреть воду до температуры около 270 градусов Цельсия и превратить ее в пар, который используется для вращения турбин электростанции и генерирования электричества. В принципе, в этом случае контролируемая ядерная бомба работает вместо угля, создавая электроэнергию, за исключением того, что энергия для вскипания воды происходит от расщепления атомов, вместо сжигания углерода.

Компоненты ядерных реакторов

Есть несколько различных типов ядерных реакторов, но все они имеют некоторые общие характеристики. Все они имеют запас радиоактивных топливных гранул — обычно оксида урана, которые расположены в трубах, чтобы сформировать топливные стержни в активной зон е реактора .

Реактор также имеет ранее упомянутые управляющи е стержн и — из поглощающего нейтроны материала, такого как кадмий, гафний или бор, которые вставляются для контроля или остановки реакции.

Реактор также имеет модератор , вещество, которое замедляет нейтроны и помогает контролировать процесс деления. Большинство реакторов в Соединенных Штатах используют обычную воду, но реакторы в других странах иногда используют графит, или тяжел ую вод у , в которой водород заменен дейтерием, изотопом водорода с одним протоном и одним нейтроном. Еще одной важной частью системы является охлаждающ ая жидкост ь , как правило, обычная вода, которая поглощает и передает тепло от реактора для создания пара для вращения турбины и охлаждает зону реактора так, чтобы он не достиг температуры, при которой уран расплавится (около 3815 градусов по Цельсию).

Наконец, реактор заключен в оболочк у , большую, тяжелую конструкцию, толщиной обычно несколько метров из стали и бетона, которая держит радиоактивные газы и жидкости внутри, где они не могут никому навредить.

Есть целый ряд различных конструкций реакторов в использовании, но один из самых распространенных — водо-водяной энергетический реактор (ВВЭР) . В таком реакторе, вода нагнетается в контакт с сердечником, а затем остается там под таким давлением, что не может превратиться в пар. Эта вода затем в парогенераторе вступает в контакт с водой, поданной без давления, которая и превращается в пар, вращающий турбины. Есть также конструкция реактора большой мощности канального типа (РБМК) с одним водяным контуром и реактор на быстрых нейтронах с двумя натриевыми и одним водяным контуром.

Насколько безопасен ядерный реактор?

Ответить на этот вопрос довольно сложно и это зависит от того, кого вы спросите и как вы понимаете «в безопасности». Вас беспокоит излучение или радиоактивные отходы, образующиеся в реакторах? Или вы больше беспокоитесь о возможности катастрофического несчастного случая? Какую степень риска вы считаете приемлемым компромиссом для выгоды ядерной энергетики? И в какой степени вы доверяете правительству и атомной энергетике?

«Радиация» является веским аргументом, в основном, потому, что мы все знаем, что большие дозы радиации, например, от взрыва ядерной бомбы, могут убить многие тысячи людей.

Сторонники ядерной энергетики, однако, отмечают, что все мы регулярно подвергаются облучению из различных источников, в том числе космическими лучами и естественной радиацией, испускаемой Землей . Среднегодовая доза облучения составляет около 6,2 миллизивертов (мЗв), половина из него из природных источников, а половина из искусственных источников, начиная от рентгена грудной клетки, детекторов дыма и светящихся часовых циферблатов. Сколько мы получаем радиации от ядерных реакторов? Лишь незначительная часть процента от нашего типичного годового облучения — 0,0001 мЗв.

В то время как все атомные станции неизбежно допускают утечку небольшого количества радиации, комиссии-регуляторы держат операторов АЭС в жестких требованиях. Они не могут подвергать людей, живущих вокруг станции, более, чем 1 мЗв излучения в год, а рабочие на заводе имеют порог 50 мЗв в год. Это может показаться много, но, по словам Комиссии по ядерному регулированию, нет никаких медицинских доказательств того, что годовые дозы излучения ниже 100 мЗв создают какие-либо риски для здоровья человека.

Но важно отметить, что не все согласны с такой благодушной оценкой радиационных рисков. Например, организация «Врачи за социальную ответственность», давний критик атомной промышленности, изучали детей, живущих вокруг немецких АЭС. Исследование показало, что люди, живущие в пределах 5 км от станций, имели двойной риск заражения лейкозом в сравнении с теми, кто живет дальше от АЭС.

Ядерные отходы реактора

Ядерная энергетика рекламируется ее сторонниками, как «чистая» энергия, потому, что реактор не выбрасывает большие объемы парниковых газов в атмосферу, в сравнении с угольными электростанциями. Но критики указывают на другую экологическую проблему — утилизацию ядерных отходов. Некоторые из отходов отработанного топлива из реакторов, по-прежнему выделяют радиоактивность. Другой ненужный материал, который должен быть сохранен, является радиоактивными отходами высокого уровня , жидким остатком от переработки отработанного топлива, в котором частично остался уран. Прямо сейчас большинство этих отходов хранится локально на атомных электростанциях в прудах воды, которые поглощают часть оставшегося тепла, произведенного отработанным топливом и помогают оградить рабочих от радиоактивного облучения

Одна из проблем, с отработавшим ядерным топливом в том, что оно было изменено в процессе деления.Когда большие атомы урана расщепляются, они создают побочные продукты — радиоактивные изотопы нескольких легких элементов, таких как Цезий-137 и Стронций-90, называемые продукты деления . Они горячие и очень радиоактивные, но в конце концов, за период в 30 лет, они распадаются на менее опасные формы. Этот период для них называется п ериод ом полураспада . Для других радиоактивных элементов период полураспада будет разным. Кроме того, некоторые атомы урана также захватывают нейтроны, образуя более тяжелые элементы, такие как Плутоний. Эти трансурановые элементы не создают столько тепла или проникающего излучения как продукты деления, но они требуют намного дольше времени, чтобы распадаться. Плутоний-239, например, имеет период полураспада 24000 лет.

Эти радиоактивны е отход ы высокого уровня из реакторов являются опасными для человека и других форм жизни потому, что они могут выделять огромную, смертельную дозу радиации даже от короткой экспозиции. Через десять лет после удаления остатков топлива из реактора, например, они испускают в 200 раз больше радиоактивности в час, чем это требуется, чтобы убить человека. И если отходы оказываются в грунтовых водах или реках, они могут попадать в пищевую цепь и поставить под угрозу большое количество людей.

Поскольку отходы так опасны, многие люди находятся в сложном положении. 60000 тонн отходов находится на атомных станциях, близких к крупным городам. Но найти безопасное место, чтобы хранить отходы — очень нелегко.

Что может пойти не так с ядерным реактором?

С государственными регуляторами, оглядываясь на свой опыт, инженеры потратили много времени на протяжении многих лет проектируя реакторы для оптимальной безопасности. Просто так они не ломаются, работают должным образом и имеют резервные меры безопасности, если что-то происходит не по плану. В результате, год за годом, атомные станции, кажутся довольно безопасными по сравнению, скажем, с воздушным транспортом , который регулярно убивает от 500 до 1100 человек в год во всем мире.

Тем не менее, ядерные реакторы настигают крупные поломки. По международной шкале ядерных событий, в которой несчастные случаи с реакторами оцениваются от 1 до 7, было пять аварий с 1957 года, которые оценили от 5 до 7.

Худшим кошмаром является поломка системы охлаждения, что приводит к перегреву топлива. Топливо превращается в жидкость, а затем прожигает защитную оболочку, извергая радиоактивное излучение. В 1979 году Блок 2 на АЭС Three Mile Island (США) был на грани этого сценария. К счастью, хорошо продуманная система сдерживания была достаточно сильна, чтобы остановить радиацию от выхода.

СССР повезло меньше. Тяжелая ядерная авария случилась в апреле 1986 года на 4-м энергоблоке на Чернобыльской АЭС. Это было вызвано сочетанием системных поломок, конструктивных недостатков и плохо обученным персоналом. Во время обычной проверки, реакция вдруг усилилась, а контрольные стержни заклинило, предотвращая аварийное отключение. Внезапное накопление пара вызвало два тепловых взрыва, выбрасывая графитовый замедлитель реактора в воздух. В отсутствии чего-либо для охлаждения топливных стержней реактора, начался их перегрев и полное разрушение в результате которого топливо приняло жидкий вид. Погибло много работников станции и ликвидаторов аварии. Большое количество излучения распространилось на площади 323 749 квадратных километров. Количество смертей, вызванных радиацией, до сих пор неясно, но Всемирная организация здравоохранения утверждает, что это, возможно, вызвало 9000 смертей от рака.

Создатели ядерных реакторов дают гарантии, основанные на вероятностной оценк е , в которой они пытаются сбалансировать потенциальный вред от случая с вероятностью, с которой он на самом деле происходит. Но некоторые критики говорят, что они должны готовиться, вместо этого, для редких, самых неожиданных, но очень опасных событий. Показательный пример — авария в марте 2011 года на атомной станции Фукусима 1 в Японии. Станция, по сообщениям, была разработана, чтобы выдерживать сильное землетрясение, но не такое катастрофическое, как землетрясение в 9,0 баллов, которое подняло 14-метровую волну цунами над дамбами, призванными противостоять 5,4-метровой волне. Натиск цунами уничтожил резервные дизель генераторы, которые предназначались для питания системы охлаждения шести реакторов АЭС, в случае отключения электричества.Таким образом, даже после того, как регулирующие стержни реакторов Фукусима прекратили реакцию деления, все еще ​​горячее топливо позволило температуре опасно подняться внутри разрушенных реакторов.

Японские чиновники прибегли к крайней мере — затоплению реакторов огромным количеством морской воды с добавкой борной кислоты, что смогло предотвратить катастрофу, но разрушило реакторное оборудование. В конце концов, с помощью пожарных машин и барж, японцы оказались в состоянии перекачивать пресную воду в реакторы. Но к тому времени мониторинг уже показал тревожные уровни радиации в окружающей земле и воде. В одной деревне в 40 км от этой АЭС, радиоактивный элемент Цезий-137, оказался на уровнях гораздо более высоких, чем после Чернобыльской катастрофы, что вызвало сомнение о возможности проживания людей в этой зоне.

Необъятная энергия крохотного атома

«Хороша наука - физика! Только жизнь коротка». Эти слова принадлежат ученому, сделавшему в физике удивительно много. Их однажды произнес академик Игорь Васильевич Курчатов , создатель первой в мире атомной электростанции.

27 июня 1954 года эта уникальная электростанция вступила в строй. У человечества появился еще один могучий источник электроэнергии.

Путь к овладению энергией атома был долгим и нелегким. Начался он в первые десятилетия XX века с открытия естественной радиоактивности супругами Кюри, с постулатов Бора, планетарной модели атома Резерфорда и доказательства такого, как сейчас кажется, очевидного факта - ядро любого атома состоит из положительно заряженных протонов и нейтральных нейтронов.

В 1934 году супруги Фредерик и Ирен Жолио-Кюри (дочь Мари Склодовской-Кюри и Пьера Кюри) обнаружили, что бомбардировкой альфа-частицами (ядрами атомов гелия) можно превратить обычные химические элементы в радиоактивные. Новое явление получило название искусственной радиоактивности .

И. В. Курчатов (справа) и А. И. Алиханов (в центре) со своим учителем А. Ф. Иоффе. (Начало 30-х годов.)

Если такую бомбардировку вести очень быстрыми и тяжелыми частицами, то начинается каскад химических превращений. Элементы с искусственной радиоактивностью постепенно уступят свое место стабильным элементам, которые уже не будут распадаться.

С помощью облучения или бомбардировки легко сделать явью мечту алхимиков - изготовить золото из других химических элементов. Только стоимость такого превращения значительно превысит цену полученного золота…

Деление ядер урана

Больше пользы (и, к сожалению, тревог) принесло человечеству открытое в 1938-1939 годах группой немецких физиков и химиков деление ядер урана . При облучении нейтронами тяжелые ядра урана распадаются на более легкие химические элементы, принадлежащие к средней части периодической системы Менделеева, и выделяют несколько нейтронов. Для ядер легких элементов эти нейтроны оказываются лишними… При «раскалывании» ядер урана может начаться цепная реакция: каждый из двух- трех полученных нейтронов способен в свою очередь произвести на свет несколько нейтронов, попав в ядро соседнего атома.

Общая масса продуктов такой ядерной реакции оказалась, как подсчитали ученые, меньше массы ядер исходного вещества - урана.

По уравнению Эйнштейна, связывающему массу с энергией, можно легко определить, что при этом должна выделиться огромная энергия! Причем произойдет это за ничтожно малое время. Если, конечно, цепная реакция станет неуправляемой и пройдет до конца…

На прогулке после конференции Э. Ферми (справа) со своим учеником Б. Понтекорво. (Базель, 1949 г.)

Огромные физические и технические возможности, скрытые в процессе деления урана, одним из первых оценил Энрико Ферми , в те далекие тридцатые годы нашего столетия еще очень молодой, но уже признанный глава итальянской школы физиков. Задолго до второй мировой войны он с группой талантливых сотрудников исследовал поведение различных веществ при нейтронном облучении и определил, что эффективность процесса деления урана можно значительно повысить… замедлив движение нейтронов. Как это ни странно на первый взгляд, при уменьшении скорости нейтронов увеличивается вероятность их захвата ядрами урана. Эффективными «замедлителями» нейтронов служат вполне доступные вещества: парафин, углерод, вода…

Переехав в США, Ферми продолжал быть мозгом и сердцем проводимых там ядерных исследований. Два дарования, обычно исключающие друг друга, сочетались в Ферми: выдающегося теоретика и блестящего экспериментатора. «Пройдет еще очень много времени, прежде чем мы сможем увидеть равного ему человека»,- писал крупный ученый У. Зинн после безвременной кончины Ферми от злокачественной опухоли в 1954 году в возрасте 53 лет.

Коллектив ученых, сплотившихся вокруг Ферми в годы второй мировой войны, решил на основе цепной реакции деления урана создать оружие невиданной разрушительной силы - атомную бомбу . Ученые спешили: вдруг нацистская Германия сумеет раньше всех изготовить новое оружие и использует его в своем бесчеловечном стремлении к порабощению других народов?

Строительство в нашей стране атомного реактора

Ученым удалось уже в 1942 году собрать и запустить на территории стадиона Чикагского университета первый атомный реактор . Стержни из урана в реакторе перемежались угольными «кирпичами» - замедлителями, а если цепная реакция все же становилась слишком бурной, ее можно было быстро остановить, введя в реактор пластины из кадмия, разъединявшие урановые стержни и полностью поглощавшие нейтроны.

Исследователи очень гордились придуманными ими простыми приспособлениями к реактору, которые сейчас вызывают у нас улыбку. Один из сотрудников Ферми в Чикаго, известный физик Г. Андерсон вспоминает, что кадмиевую жесть прибивали к деревянному бруску, который при необходимости мгновенно опускался в котел под действием собственной тяжести, что послужило поводом дать ему название «миг». Г. Андерсон пишет: «Перед запуском котла этот стержень следовало вытянуть наверх и закрепить веревкой. При аварии веревку можно было бы перерезать и «миг» занял бы свое место внутри котла».

На атомном реакторе была получена управляемая цепная реакция, проверены теоретические расчеты и предсказания. В реакторе шла цепь химических превращений, в результате которых накапливался новый химический элемент - плутоний. Его, как и уран, можно использовать для создания атомной бомбы.

Ученые определили, что существует «критическая масса» урана или плутония. Если атомного вещества достаточно много, цепная реакция приводит к взрыву, если мало, меньше «критической массы», то происходит просто выделение тепла.

Строительство атомной электростанции

В атомной бомбе простейшей конструкции уложены рядом два куска урана или плутония, причем масса каждого немного не «дотягивает» до критической. В нужный момент запал из обычного взрывчатого вещества соединяет куски, масса атомного горючего превышает критическое значение - и выделение разрушительной энергии чудовищной силы происходит мгновенно…

Ослепительное световое излучение, ударная волна, сметающая все на своем пути, и проникающее радиоактивное излучение обрушились на жителей двух японских городов - Хиросимы и Нагасаки - после взрыва американских атомных бомб в 1945 году, поселив с тех пор в сердцах людей тревогу перед страшными последствиями применения атомного оружия.

Под объединяющим научным началом И. В. Курчатова советские физики разработали атомное оружие.

Но руководитель этих работ не переставал думать и о мирном использовании атомной энергии. Ведь атомный реактор приходится интенсивно охлаждать, почему же это тепло не «отдать» паровой или газовой турбине, не применить для обогрева домов?

Через атомный реактор пропустили трубки с жидким легкоплавким металлом. Разогретый металл поступал в теплообменник, где передавал свое тепло воде. Вода превращалась в перегретый пар, начинала работать турбина. Реактор окружили защитной оболочкой из бетона с металлическим наполнителем: радиоактивное излучение не должно вырываться наружу.

Атомный реактор превратился в атомную электростанцию, несущую людям спокойный свет, уютное тепло, желанный мир…

Ядерные реакторы.

Ядерный (атомный) реактор - это устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления атомов, которая сопровождается выделением большого количества энергии.

Ядерные реакторы являются основным элементом современных атомных электростанций.

Первые ядерные реакторы.

Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми.

Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года.

В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.

История создания ядерных реакторов.

Научная работа в Германии.

Теоретическую группу «Урановый проект» нацистской Германии, работающую в Обществе кайзера Вильгельма, возглавлял Вайцзеккер, но лишь формально. Фактическим лидером был Гейзенберг, разрабатывающий теоретические основы цепной реакции, Вайцзеккер же с группой участников сосредоточился на создании «урановой машины» - первого реактора.

Поздней весной 1940 года один из учёных группы - Хартек - провёл первый опыт с попыткой создания цепной реакции, используя оксид урана и твёрдый графитовый замедлитель. Однако имеющегося в наличии делящегося материала не хватило для достижения этой цели.

В 1941 году в Лейпцигском университете участником группы Гейзенберга Дёпелем был построен стенд с тяжеловодным замедлителем, в экспериментах на котором к маю 1942 года удалось достичь производства нейтронов в количестве, превышающем их поглощение.

Полноценной цепной реакции немецким учёным удалось достичь в феврале 1945 года в эксперименте, проводимом в горной выработке близ Хайгерлоха. Однако спустя несколько недель ядерная программа Германии прекратила существование.

Научная работа в США.

Цепная реакция деления ядер (кратко - цепная реакция) была впервые осуществлена американскими учеными в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор, названный «Чикагской поленницей» (Chicago Pile-1, CP-1). Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его диоксида. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ядерным топливом.

Научная работа в СССР.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова.

Первый советский реактор Ф-1 был построен в Лаборатории № 2 АН СССР (Москва). Этот реактор был выведен в критическое состояние 25 декабря 1946 года. Реактор Ф-1 был собран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Реактор Ф-1, как и реактор CP-1, не имел системы охлаждения, поэтому работал на очень малых уровнях мощности (Средняя мощность не превышала 20 Вт. Для сравнения, первый американский реактор CP-1 редко превышал 1 Вт мощности). Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1948 году введён в действие реактор И-1 (по другим данным он назывался А-1) по производству плутония.

27 июня 1954 года начала работать первая в мире атомная электростанция электрической мощностью 5 МВт в городе Обнинске.

Физические принципы работы ядерного реактора.

Схема ядерного реактора на тепловых нейтронах:

1 - Управляющий стержень.

2 - Радиационная защита.

3 - Теплоизоляция.

4 - Замедлитель.

5 - Ядерное топливо.

6 - Теплоноситель.

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Таким образом, возможны следующие варианты развития цепной реакции деления атомов:

1. ρ<0, Кэф

2. ρ>0, Кэф>1 - реактор надкритичен, интенсивность реакции и мощность реактора увеличиваются.

3. ρ=0, Кэф=1 - реактор критичен, интенсивность реакции и мощность реактора постоянны.

Классификация ядерных реакторов.

По назначению и характеру использования ядерные реакторы делятся на:

Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт.

Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.

Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов. Мощность таких реакторов обычно не превышает нескольких кВт.

Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов обычно не более 100 МВт. Выделяющаяся энергия, как правило, не используется.

Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным ядерным реакторам относят реакторы, использующиеся для опреснения морской воды.

Часто ядерные реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

Ядерный реактор. Атомный реактор.

Открытие нейтрона явилось предвестником атомной эры человечества, поскольку в руках физиков оказалась частица, способная, благодаря отсутствию заряда, проникнуть в любые, даже тяжелые, ядра. В ходе экспериментов по бомбардировке ядер урана нейтронами, проведенных итальянским физиком Э. Ферми, были получены радиоактивные изотопы и трансурановые элементы - нептуний и плутоний. Таким образом, стало возможным создание ядерного реактора - установки, превосходящей по своей энергетической мощи все, что было до того создано человечеством.

Атомный реактор - это аппарат, где происходит контролируемая реакция ядерного распада, основанная на цепном принципе. Данный принцип заключается в следующем. Ядра урана, бомбардируемые нейтронами, распадаются и образуют несколько новых нейтронов, которые, в свою очередь, вызывают деление следующих ядер. При таком процессе количество нейтронов быстро увеличивается. Отношение числа нейтронов в одной фазе деления к количеству нейтронов предыдущей фазы ядерного распада называется коэффициентом размножения.

Чтобы ядерная реакция была подконтрольной, и необходим атомный реактор, который используется на АЭС, подводных лодках, в экспериментальных ядерных установках и т.д. Неконтролируемая ядерная реакция неизбежно приводит к взрыву колоссальной разрушительной силы. Такой тип цепной реакции применяется исключительно в взрыв которых и является целью ядерного распада.

Атомный реактор, в котором высвобождившиеся нейтроны движутся с огромной скоростью, с целью контроля реакции оснащается специальными материалами, поглощающими часть энергии элементарных частиц. Подобные материалы, обладающие способностью снижать скорость и уменьшать инерцию движения нейтронов, называются замедлителями ядерной реакции.

Состоит в следующем. Внутренние полости реактора заполнены дистиллированной водой, циркулирующей внутри специальных трубок. Атомный реактор автоматически включается при удалении из активной зоны графитовых стержней, поглощающих часть энергии нейтронов. С началом цепной реакции происходит высвобождение колоссального количества тепловой энергии, которая, циркулируя в активной зоне реактора, достигает При этом вода нагревается до температуры 320 о С.

Затем вода первого контура, двигаясь внутри по трубкам парогенератора, отдает тепловую энергию, принятую от активной зоны реактора, воде второго контура, при этом не соприкасаясь с ней, что исключает попадание радиоактивных частиц за пределы реакторного зала.

Дальнейший процесс ничем не отличается от происходящего на любой тепловой электростанции - вода второго контура, превратившаяся в пар, придает вращение турбинам. А турбины активируют гигантские электрогенераторы, которые и вырабатывают электрическую энергию.

Атомный реактор не является сугубо человеческим изобретением. Поскольку во всей Вселенной действуют одинаковые законы физики, энергия ядерного распада необходима для поддержания стройной структуры космоса и жизни на Земле. Естественный природный ядерный реактор представляют собой звезды. И одна из них - Солнце, которое своей энергией создало все условия для зарождения жизни на нашей планете.